
MultiLock: Biometric-Based Graded Authentication for Mobile
Devices

Shravan Aras
shravanaras@cs.arizona.edu

University of Arizona
Tucson, Arizona

Chris Gniady
gniady@cs.arizona.edu
University of Arizona

Tucson, Arizona

Hari Venugopalan
hvenugopalan@ucdavis.edu
University of California, Davis

Davis, California

ABSTRACT
While traditionally smartphones have relied on methods such as a
passcode or pattern-based authentication, biometric authentication
techniques are gaining popularity. However current biometric met-
hods are heavily dependent on various environmental factors. For
example, face authentication methods depend on lighting conditi-
ons, camera shake and picture framing, while fingerprint scanning
relies on finger placement. All of these variables can result in these
systems becoming time-consuming for the user to use. To remedy
these problems, we propose MultiLock, a passive, graded authen-
tication system, which uses face authentication as a case study to
propose a system that gives users access to their devices without
requiring them to manually interact with the lock screen. Multi-
Lock allows a user to categorize applications into various security
bins based on their sensitivity. By doing so MultiLock can grant
users access to different sensitivity applications, based on varying
degrees of sureness that the device is being used by its rightful
owner. Thus, allowing the device to be used even in adverse lig-
hting conditions without hampering user experience. In our tests,
MultiLock was able to grant access to users for 88% of the inte-
ractions on average, while passively running in the background.
While we use face authentication as an example to demonstrate and
propose MultiLock, our system can be used with any confidence
based biometric system.

CCS CONCEPTS
• Security and privacy→ Mobile platform security.

KEYWORDS
authentication, mobile devices

ACM Reference Format:
ShravanAras, Chris Gniady, andHari Venugopalan. 2019.MultiLock: Biometric-
Based Graded Authentication for Mobile Devices. In MOBIQUITOUS ’19:
EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, November 12–14, 2019, Huston, TX . ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBIQUITOUS’19, November 12–14, 2019, Huston, TX
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Smartphones have become ubiquitous in today’s world. They are
used everywhere, for communication, entertainment, commerce,
navigation and so on. We depend on our phones for all tasks ran-
ging from trivial time checking to complex high-security banking
operations. This growing reliance on smartphones for everyday
tasks has also resulted in the need for better authentication in order
to secure access to the smartphone and to prevent unauthorized use
of applications sensitive to privacy such as banking or communica-
tion. There are various forms of authentication available to users
ranging from simple memorization of pins, passwords or patterns
to biometric forms of authentication. While proper authentication
is indispensable, this step requires users to perform additional tasks
before they can use the phone for even trivial tasks such as weather
checking.

Currently, the most popular means of securing smartphones
from unauthorized access is by using a pin or password. Howe-
ver, many users find these methods cumbersome, and some opt to
disable them as a result. In a study conducted by Breitinger and
Nickel [5], where they surveyed a total of 550 participants, 40% of
the participants who left their phone unprotected did so because
they felt it was more convenient than setting a pin, while 3% of par-
ticipants indicated that it was too difficult to memorize a pin. Owing
to these inconveniences various biometric forms of authentication
have been proposed [4], with face-based authentication and fin-
gerprint scanning proving to be more widely accepted than others.
Fingerprint scanning, however, requires additional hardware which
has led to a slower adoption rate. Face detection, on the other hand,
can make use of existing front-facing camera on smartphones.

The primary aim of a face authentication system is to confirm or
deny the identity claimed by a person, thereby allowing them access
to the protected resource if validated. This is in contrast to a face re-
cognition system which attempts to establish the identity of a given
person out of a closed pool of individuals. While most face authen-
tication systems use well-established algorithms [2, 7, 12, 24], in
common, they introduce a confidence parameter which determines
the security of the system. Typically smartphones require the user
to authenticate once, while unlocking the phone, by positioning
his/her face in front of the front-facing camera until the device po-
sitively detects the user or falls back to a more traditional approach
such as pin or password. The tolerance for false positive in such
systems is controlled by varying the confidence threshold. Higher
the confidence threshold, lower the probability of an intruder being
mistaken as an authorized individual. Successful authentication is
also dependent on other factors such as the time for which the user
faces the camera, good lighting, proper alignment, unaltered look
(such as sunglasses, hats, etc.) and so on. Thus, when the user has

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MOBIQUITOUS’19, November 12–14, 2019, Huston, TX Shravan Aras, Chris Gniady, and Hari Venugopalan

to be authenticated, all these factors force the user to deviate from
normal interaction with the phone.

In this paper, we propose MultiLock framework that reduces
the burden of facial authentication, as outlined above, while still
providing highly secure authentication for sensitive applications.
MultiLock relies on a key observation that not all applications re-
quire the same level of security. In everyday scenarios, we use a
variety of applications, and not all of them are perceived equally
sensitive by their users. While users may deem applications related
to finance or privacy like emails as sensitive, applications like games
may not be thought as equally sensitive. This observation allows
us to define varying levels of security for different applications, a
concept referred to as graded security or multilevel security [13].
Applying this approach MultiLock allows users to quickly unlock
the phone and access low sensitivity applications while monitoring
user’s faces and authenticating them in the background. We argue
that by the time the user accesses a more sensitive application,
potentially scrolling through several application pages on their
phones, MultiLock will have plenty of time to observe the user’s
face and authenticate to the level required by the more sensitive
applications. Subsequently this paper makes the following contribu-
tions: (1) We propose a graded security authentication framework
using facial authentication to improve usability of the phones; (2)
We show that majority of the time users do not access sensitive
application, which completely eliminated any inconvenience due
to authentication; (3) We show that for sensitive applications, a
majority of the authentication effort can be performed in the back-
ground. It is important to note that our approach is not just limited
to face recognition, but can be applied to any confidence based
system, where the true user guarantee can be quantified. Upcoming
technologies like iris and fingerprint scanning, which determine if
the true user is using device by producing a confidence value, are
other potential candidates for this approach.

2 MOTIVATION
A considerable advantage of using biometric authentication met-
hods on smartphones is the lack of need for the user to recall
passcodes or gestures to unlock the system. By using biometric
authentication methods such as facial recognition, users can ideally,
unlock their phones instantly by merely looking at it. However, in
practice using facial recognition as an authentication method can
be cumbersome for users and take considerable time to unlock the
device. In a study conducted by Trewin et. al. [23] it was shown
that the median user response time for using facial authentication
was 5.55 seconds. The majority of the time was used to provide the
system with a sample for authentication (not including processing
time) as the facial recognition relies heavily on users correctly posi-
tioning the phone camera such that their complete face was visible,
stabilizing the camera and having the ambient lighting that was
adequate to provide an acceptable image.

To illustrate the above observation, we wrote a custom applica-
tion on an android device, to take photos using the front-facing
camera while the users went about their normal day interacting
with the phone and compare it to best lighting conditions and best
face positions. Figure 1.a shows an image sample taken under per-
fect lighting conditions, with the camera held at eye level and kept

(a) (b) (c)

Figure 1: Image samples taken under perfect lighting condi-
tion(a), and while user was interacting with his phone(b,c)
to test unlocking Google’s default facial authentication lock
screen.

still. While Figure 1.b and Figure 1.c show image samples which
were taken while users interacted with their phones. In order to
test the fidelity of existing facial authentication system, we used
Google’s default face authentication lock screen, using a Motorola
X 2014 device running Android 5.1.1. We first trained the system
using a subject’s face, and then held the 3 test images in Figure 1
one at a time in front of the phone camera. We observe that while
the image in (a) can instantly unlock the phone both images (b) and
(c) fail to unlock the phone. We also conducted these experiments
with 2 other subjects, which yielded similar results. This simple
example illustrated that to unlock the phone, the user needs good
lighting condition and proper face position, which may be difficult
or cumbersome for users.

This negatively affects user experience as shown by Trewin et. al.
where facial authentication resulted in 3.1% failure to acquire rate
(FTA), with a system usability score (SUS) of 75% when compared to
78% for password-based authentication [23]. Failure to acquire [8]
is a metric used in user studies of biometric authentication methods
to measure the failure to provide a sample of sufficient quality. In
case of facial authentication, it indicates the number of sample
images that do not contain good enough data, due to bad lighting
conditions, for the verification algorithm to work on. It is interes-
ting to note that Trewin et. al. carried out these experiments in a
laboratory setting, with fixed lighting conditions. We believe that
real-life interactions would lead to a higher FTA, due to conside-
rable variations in lighting conditions. On the other hand, System
Usability Score [6] indicates how users perceive the simplicity of
using a system and is calculated based on questionnaire. A higher
value indicates that the system is seen as more usable. The primary
reason why users preferred password over face authentication as
indicated by SUS was that it was time-consuming and cumbersome
to face the camera, deviating from the normal workflow of using
the device.

While providing security for accessing a phone is important, it
may not be necessary for all types of interactions. For example,
a user checking current weather conditions on their phone has a
much different security implication than user accessing banking or
email applications. Dorflinger et. al. [9] have shown that different
user groups (distinguished by age, gender, and profession), perceive

MultiLock: Biometric-Based Graded Authentication for Mobile Devices MOBIQUITOUS’19, November 12–14, 2019, Huston, TX

Users Values Percentage
High Mod Low High Mod Low

1 8 2 56 12.1% 3% 84%
2 56 4 253 17.9% 1.2% 80%
3 21 228 200 4.7% 50% 44%
4 28 8 105 19.8% 5.6% 74%
5 59 6 190 23.1% 2.3% 74%
6 74 9 307 19% 2.3% 78.7%
7 0 231 59 0% 79.6% 20.3%
8 44 4 160 21% 2% 77%

Table 1: Distribution of interactions with various applicati-
ons in traces, categorized into different security levels.

the sensitivity and hence the need for security of similar applica-
tions differently. In order to understand how users interact with
the applications on their devices, we collected usage traces from 8
different users, recording the applications they started along with
their respective timestamps. These traces were collected over a
period of 2 days, with a mix of weekend and weekdays. Users were
also asked to rate the applications they use into three categories
(high, moderate, and low) based on how important the security of
the applications are for them. Users marked applications as high if
they believed an unauthorized access to those applications would
lead to financial or privacy loss. This often included applications
related to banking, instant messaging, social media, emails, etc.
Applications considered noncritical by users were marked as low,
these often included games, media players, news readers, etc. On
the other hand, users often rated applications such as file explorers,
sharing apps such as Dropbox, or applications which stored fitness
or health data as moderate.

Table 1 shows the distribution of application interaction occur-
rences (number of times users interacted with different applica-
tions), marked as either high, moderate or low, as indicated by
their respective users. The variation in interaction count directly
relates to how often users used their devices. We observe that inte-
ractions with high sensitivity applications on average account for
only 15% of total interactions. This relatively small percentage of
high sensitivity application invocations suggests that users spend
a considerable about of time using applications which do not re-
quire a high degree of authentication. On the other hand, we see a
large number of invocations for low sensitivity applications, 78%
on average for all users except user 3 and 7. In case of both user 3
and 7, it is interesting to note how they have 50%, 80% moderate
sensitivity application interactions respectively, while the others
have less than 6% of it. This relates back to Dorflinger et. al. [9]
observation, where different users perceive security differently. In
user 3’s case not only did we see a large number of social media,
instant messaging applications, and emails but unlike other users,
he marked them as moderate level of security. Similarly, while other
users marked media applications such as Spotify, Hulu, and Netflix
to be low security, user 3 perceived them to be of moderate security.

It is also common for users to first interact with applications
of low sensitivity before accessing high sensitivity applications.

0 5 10 15 20 25 30
Time[sec]

0

0.2

0.4

0.6

0.8

1

Cu
m

ul
at

iv
e

St
ar

t T
im

es

High Moderate Low

Figure 2: Cumulative distribution of application start times
after screen on, categorized into various security levels as
indicated by users, for all‘ users.

Figure 2 shows the cumulative distribution of time users took to
start different sensitivity groups of applications once the screen
was turned on. We observe that for all users, 80% of applications
which fall into the high sensitivity category are opened after 4 se-
conds once the screen has been turned on and 60% are opened after
7.5 seconds. Similarly, 80% of moderate sensitivity applications are
opened after 1.5 seconds after the screen has been turned on. It
is interesting to note that there were several instances in which
applications were opened after 30 seconds, or even after several
minutes in some cases. This occurred when these applications were
not the first to be opened after the screen was turned on but rather
when users shifted to them after using other applications. For exam-
ple, we observed that some users would open an email application
after having spent several minutes watching YouTube videos. On
the other hand, low sensitivity applications were opened almost
immediately after the screen was turned on as users would quickly
check the time or the weather.

From the above analysis, we draw two key insights. First, there
is significant amount of applications that do not require security
measures. Second, there is a considerable amount of time before
users open high or moderate sensitivity applications. Those insights
lead us to propose performing facial authentication in the back-
ground, while users interact with low security application. The goal
of our approach is to mitigate this obtrusiveness of facial based
authentication and improve user experience.

3 DESIGN OF MULILOCK
The primary design goal of MultiLock is to provide users with fast
and unobtrusive access to their devices while providing desired
application security. MultiLock provides graded authentication by
varying the false acceptance rate (FAR) according to the application
sensitivity level designated by the user. Applications labeled by the
user with high sensitivity will have a lower FAR providing better
user validation, while applications having lower sensitivity will
have higher FAR allowing for faster and lower level of user valida-
tion. MultiLock consists of two components: Facial Authentication
and Security Manager. The system components and the operation
flow is shown in Figure 3. Facial Authentication mechanisms

MOBIQUITOUS’19, November 12–14, 2019, Huston, TX Shravan Aras, Chris Gniady, and Hari Venugopalan

CameraImage
Buffer

Face
Crop LBPH

Current
Confidence

Enough
Confidence

Highest
Sensitivity/
Timeout

App
Open

Fall
Back

Allow
Access

Adapt
Model

Sensitivity

Yes
No

YesNo

Figure 3: Flowchart of the MultiLock system.

utilize the phone’s front-facing camera to search for the user’s
face and perform authentication until the desired confidence value
is reached. Security Manager monitors application interactions
and validates the security level from Facial Authentication phase,
needed to interact with the given application.

3.1 Facial Authentication
Facial authentication in MultiLock is performed continuously from
the time the user turns the screen on until the highest level of
authentication is obtained. At this point, the user can interact with
any application without interruptions. MultiLock captures images
from the front-facing camera at a rate of 5 fps. This frame rate
balances the authentication processing overhead and face image
capture in case the user does not directly face the camera, in which
case a face may appear only periodically in the camera view. Since
user perception threshold is 50-100ms [22], which states that the
user needs up to 100ms to notice the change in output, we set
the frame capture period to 200ms arguing the user needs another
100ms before the information is processed and the user reacts to
alter screen content. The images are stored in a circular buffer as
shown in Figure 3 before being processed by the face crop phase.

The face crop phase isolates the user’s face from superfluous
background content in preparation for the actual face authentica-
tion step. To achieve this, the system makes use of Haar Cascade
face detection technique provided by Open Computer Vision Li-
brary (OpenCV) [19], an open-source cross-platform library for
performing real-time computer vision. The cropped image is then
passed onto the face recognition algorithm. In our current imple-
mentation, we make use of the Local Binary Patterns Histogram
(LBPH) algorithm for face recognition, however our design can
easily be adapted to support other algorithms by adding them to
this stage. LBPH focuses on extracting local features from images
as proposed by Ahonen, T. Hadid et al in [2]. The idea is to not look
at the whole image as a high-dimensional vector, but describe only

local features of an object. The features extracted in this manner
exhibit a low dimensionality. The basic idea of Local Binary Pat-
terns is to summarize the local structure in an image by comparing
each pixel with its neighborhood. It takes a pixel as center and
thresholds its neighbors against it. If the intensity of the center
pixel is greater or equal to its neighbor, then it denotes it with a
1 else a 0. This generates a binary value for each pixel referred to
as the Local Binary Pattern codes, and a histogram is created with
these values for the entire image.

The histogram of the captured image is used to determine the
likelihood that captured images belong to the authorized user of
the device, by comparing the histogram of the captured image
with those from a pre-trained LBPH model of the authorized user’s
face. More precisely it calculates the chi-square distance between
the sample histogram and histograms in the model (a histogram
corresponding to each image in the model), this distance is known
as the confidence value. This resulting confidence value indicates
how closely the captured image matches the pre-trained model.
The lower the confidence value, the higher the likelihood of the
user accessing the device is the authorized user. The initial model
is trained upon first invocation of the MultiLock system, and the
authorized user is asked to face the camera under good lighting
conditions to capture the images which are face cropped and fed
into the OpenCV LBPH model trainer. To provide alternate face
angles to the trainer the user is also asked to hold the phone in
a typical position they interact with it, which is usually looking
down at the phone. These two scenarios account for majority of
interaction positions for the user facing the camera.

3.2 Security Manager
The security manager is responsible for granting users access to
various applications based on the results of facial authentication.
The confidence value returned by the facial authentication indicates
how closely the sample image matches the trained model. Before
we can proceed with authenticating and granting access to the
applications, we need to map confidence values to the correspon-
ding application sensitivity levels - high, moderate, and low. To
accomplish that, we make use of two widely used metrics in face
recognition literature, false rejection rate(FRR) and false acceptance
rate(FAR). For a given confidence value, FAR indicates the number
of cases when the model falsely accepts an impostor image, while
FRR indicates the number of instances when a true user is rejected
by the model. Both FAR and FRR values are related to the corre-
sponding confidence value. Choosing a low confidence value would
decrease FAR, thus making the system more secure. However, a
lower confidence value also means less tolerance to changes in
lighting and facial features, and it can lead to an increase in FRR,
thus making the model too conservative.

We use the MUCT [16] facial database, a public domain research
database of faces from the University of Cape Town, and split the
images into various groups as outlined in the Laussanne [15] pro-
tocol to calculate confidence values corresponding to the security
levels. TheMUCT database contains a total of 3755 images, obtained
from 276 individuals, capturing different angles of the subjects face
using 5 cameras and under varying lighting conditions. We split

MultiLock: Biometric-Based Graded Authentication for Mobile Devices MOBIQUITOUS’19, November 12–14, 2019, Huston, TX

0

20

40

60

80

100

0 50 100 150 200 250

Pe
rc

en
ta

ge

Confidence Values

FRR FAR

High Applications

Moderate Applications

Figure 4: FRR and FAR values for different confidence va-
lues, from running LBPH on MUCT database, annotated
with confidence values we use for different application sen-
sitivity.

the images into 2 groups - set of images corresponding to 83 indi-
viduals into an impostor group, whereas images of the remaining
193 individuals were added to the client group. The client group
served as a source for generating the training model, and also for
providing sample images to obtain the FRR values. On the other
hand, the impostor set was used to extract images for calculating
FAR values. We then generated client training models for each of
the 193 individuals using images from a single front-facing camera
(1 of the five camera angles in the MUCT database) and their corre-
sponding images under various lighting conditions. The remaining
images (4 camera angles and their respective lighting condition
variations) from the client set where used as test images against the
trained model to obtain FRR values. Figure 4 shows how FAR and
FRR values for our test setup differ for various confidence values.

Ideally, we would want critical applications to have zero tole-
rance against importers gaining access to them, i.e. wewould choose
a confidence value for critical applications where FAR=0. However,
this would make the model too conservative and would reject all
true images, as seen from Figure 4. Thus, we set our confidence
threshold for critical applications to a value where FAR=FRR, as
shown in the Figure 4. This gives us FAR value of 25% and a cor-
responding confidence value of 50. However, unlike high-security
applications, determining a confidence value for moderate applica-
tions is debatable and comes down to user preference. While some
users might perceive the security of moderate applications to be
closer to high applications, others might be content with much
looser security guarantees, allowing them to gain quicker access to
the applications. Thus, as shown in Figure 4 this value can range
from 50 to 150 where 150 offers the least security with 100% FAR.

For our current implementation, we pick the default value as
the midpoint between 25% and 100% FAR, i.e. a confidence value
corresponding to 62% FAR. The corresponding confidence value of
66 will; therefore, give equal importance to both user preferences.
Finally, low sensitivity applications are trivial. These often consist
of applications which require no security to unlock, for instance
clock, weather, news, etc. We don’t set a predefined confidence
value for these and allow them to be opened by any user. These
predefined confidence values are then used by MultiLock to grant

or deny access to various applications with different sensitivity
levels that were designated by the user.

3.3 MultiLock Operation
We start MultiLock as soon as the user turns on the screen. As
Facial Authentication continues to perform the image acquisition
steps in the background, it generates a steady stream of confidence
values. Whenever the user opens an application, as indicated in
Figure 3, MultiLock first searches for that applications sensitivity
in its database. If the application is not found, i.e. the user has
opened this application for the first time, MultiLock asks the user
to mark it either as high, moderate or low. Users can also change
this at a later stage by accessing the setting menu inside MultiLock.
MultiLock then determines the required confidence value for the
application based on its sensitivity as outlined in Section 3.2. If this
confidence value is equal to or greater than the confidence value
returned by the image recognition phase, the user is granted access
to the application else the user is requested to authenticate either by
better face position or through a secondary authentication method
such as passcode.

While our simplified assumption so far was that MultiLock runs
continuously until highest confidence level is reached, we need
to take a closer look at the termination requirements to prevent
it from negatively impacting system performance and battery life.
Subsequently, MultiLock has three terminating conditions for Facial
Authentication. First, as we described so far, the Face Authentica-
tion phase is terminated when a confidence value of 50 or lower is
obtained, since a confidence value of 50 indicates that MultiLock
can grant users access to applications with the highest sensitivity,
as shown in Figure 4. Second, the Face Authentication phase is
terminated when a user requests to open an application which re-
quires a lower confidence value (higher sensitivity) than what Face
Authentication has been able to acquire. In this scenario, MultiLock
prompts the user for a better face position or lighting, or falls back
to a secondary authentication, resulting in the highest authentica-
tion level. Third, there may arise a scenario when neither the first
or second conditions are met. For example, when a user interacting
with low sensitivity application under poor lighting condition, the
Face Authentication may attempt to run as long as the user conti-
nues interacting with it, degrading the battery life. To avoid such
situation, MultiLock relies on a timeout period to shut down Facial
Authentication. We select the timeout period based on the distri-
bution of application start times, as observed in our user studies
shown in Figure 2. We observe that there is an 80% chance that
users will start high or moderate sensitivity applications before 30
seconds from the time the screen is turned on. This scenario depicts
how users would normally interact with their phone, and we have
used a 30-second timeout value in our current implementation.

3.4 Dynamic Training Optimization
The adaptability of MultiLock to changing user condition or face
position angles with respect to the camera is critical in providing
a robust system that will minimize the fallback on secondary au-
thentication. We augment MultiLock with dynamic retraining to
update the authorized user’s trained face model to better cope with
varied lighting conditions or positions that users use their devices

MOBIQUITOUS’19, November 12–14, 2019, Huston, TX Shravan Aras, Chris Gniady, and Hari Venugopalan

in. Dynamic retraining occurs when MultiLock fails to provide
authentication as described in the second termination case above.
Once users authenticate themselves using the alternate method, the
images captured just before the secondary authentication method
is used to update the model. Not all lighting conditions can result in
beneficial retraining and MultiLock only performs retraining if the
Haars Cascade method is able to detect a face in the set of the col-
lected image captures. Since the LBPH model maintains histograms
corresponding to the images inside the model, adding another mo-
del image only requires the appending a new histogram, a fast and
efficient operation that does not require the complete rebuilding
of the model. Further, we must also deal with the case when the
true user unlocks the phone using secondary authentication (due
to Mutlilock failing), and then hands the device to another person.
In order to prevent Multilock from retraining using the wrong face
we empirically defined a retraining threshold. We calculated this
retraining threshold by running user models against true user sam-
ple images and then against advisory images (where the face does
not match) and then clustered these values. We found that when
an advisory face was presented, the LBPH values were in the range
of 110 - 171. On the other hand when the model was presented
with the true user’s face, the values where much lower in the range
of 38-47. We thus set our retraining threshold at 47 based on our
observations.

Finally, to prevent the model from growing in size indefinitely,
we limit the model size to 16 MB and employ an LRU(least recently
used) eviction policy for histograms in the model. This memory
overhead is small and less than 1% of the overall memory in a ty-
pical smartphone, which is 2 GB in size or larger. We implement
LRU by associating a timestamp with each histogram in the model.
Whenever LBPH returns a confidence value, it also outputs the
histogram inside the trained model which was the closest match to
the sample image and we associate the current timestamp with this
histogram. The histogram with the oldest timestamp is evicted once
the memory limit is reached. Given the small memory footprint,
we are able to store up to 54 image histograms, for images corre-
sponding to 480p inside the model. A significant number before
we need to evict old unused models. Subsequently, we selected the
timestamp implementation instead of a typical stack implementa-
tion (as in case of LRU), since evictions are infrequent and stack
manipulations would be slightly costlier. Finally, we refer to this
variant as MultiLock Dynamic, whereas the one without retraining
is referred to as MultiLock Static in subsequent sections.

3.5 Implementation Details
We decided to implemented MultiLock for testing as an android
application, thus allowing MultiLock to run on non-rooted devi-
ces and without any OS modifications. We used a Samsung Note3
running Android 5.0.0 for testing MultiLock implementation. Both
the image acquisition phase and the security manager run as in-
dependent services, using Android Binder to communicate. The
image acquisition service uses an image size of 480p to take images
in the background. To detect when an application comes to the
foreground, we make use of Android accessibility features. Each
application produces various accessibility events, one of them being
TYPE_WINDOW_CONTENT_CHANGED along with the package

(a) (b) (c)

Figure 5: Screenshots of the MultiLock application. (a) and
(b) capturing training samples, (c) prompts the user to select
application sensitivity.

name that produced it. We simply check for the package name in
our database and open an activity requesting the user to rate the
application sensitivity, if we cannot find it. If on the other hand,
the application exists in the database, we either allow activity with
the fallback authentication mechanism, if security manager deter-
mines the application is too sensitive to grant access or give user
access to the application. Figure 5 shows screenshots of MultiLock
in action. In order to carry out face recognition and cropping tasks,
we integrated the OpenCV binaries into our application using the
OpenCV SDK for Android [18]. In order to increase user security,
we automatically switch to the home screen when the phone’s dis-
play is turned off. This has no performance impact on the user,
since their current application is pushed onto the system memory
in pause state and not killed. Both Figure 5.a and Figure 5.b show
one of our users taking images for training the model. The appli-
cation instructs them to take images while looking straight into
the camera, in Figure 5.a and another one while looking down at it
Figure 5.b. Figure 5.c shows the interface when an application is
invoked, who’s sensitivity MultiLock is not aware of. Along with
the 3 options of low, moderate and high, we also provide footnotes
describing example type of applications for those categories. This
makes it easier for users to choose the most appropriate one. Finally,
as MultiLock runs in the background as a service, we show a small
camera-shaped icon in the notification bar, whenever MultiLock is
running, to notify the users about it.

3.6 Threat Model
We use a threat model to analyze the security of Multilock. This
helps us identify, quantify, and address the security risks associated
withMultilock. The threat model is divided into 3 sections - External
Entities, Stride Thread List, and Countermeasures List.

External Entities. We refer to all components which are exter-
nal to the code/implementation of Multilock and can pose a threat
to it. These components are not fully under the control of Multilock
execution environment.

• The user currently interacting with the mobile device.
• The OpenCV Haar cascades are used for face detection. The
Haar descriptions are read from an XML file.

MultiLock: Biometric-Based Graded Authentication for Mobile Devices MOBIQUITOUS’19, November 12–14, 2019, Huston, TX

• On training, the user model is stored in a private file. The
model is updated for Multilock dynamic.

• The security preferences of the user are loaded from an
application-specific private database. The database stores
the security levels designated by the user for each application
on the device.

STRIDE Threat List. We categorize the threats using STRIDE -
Spoofing, Tampering, Repudiation, Information Disclosure, Denial
of Service, Elevation of Privilege. We also specify the set of security
controls that could prevent these threats from harming the system.

• Type: Spoofing
Description: An attacker could try to tamper with the trained
user model file or the Haarcascade. This could result in false
positives as well as false negatives.
Security Control: Authentication.
Countermeasures: Store trained model file and Haarcascade
in Android application-specific private storage. We rely on
Android’s sandbox security model to safeguard our files from
unauthorized access by other applications.

• Type: Elevation of Privileges
Description: An attacker could change the security levels of
different applications. The attacker could lower the security
level of a sensitive application and try to obtain access with
lesser confidence.
Security Control: Authorization.
Countermeasures: We store the security levels in Android
application Sqlite database. Android ensures that this data-
base content can only be accessed by the same application
that created it. Thus preventing unauthorized access from
other applications.

4 EXPERIMENTAL RESULTS
In order to validate MultiLock, we collected interaction traces from
8 users over a period of 2 days. We choose 8 users to include a mix
of graduate students and professors. These users were asked to
install our custom application which recorded the user’s face using
the front-facing camera when they interacted with their phone.
We also recorded the applications that users opened during this
session. Both of these events were triggered after the users turned
on ftheir screen and were augmented with timestamps to match
interactions videos to exact application openings. We also gave a
brief explanation to each of the users about how our application
worked and provided them with an option to disable video and
application monitoring if needed. This setup allowed us to collect
real-life interaction traces from users throughout the day, thus
giving us a realistic set of traces to validate MultiLock. Finally, we
provided each of the users with their respective list of applications,
and asked them to categorize them into - high, moderate, and low
sensitivity applications.

Figure 6 shows the profiling system for power measurements of
MultiLock.We connected Samsung Note 3 directly to the power sup-
ply and removed the battery to eliminate variability of the battery
voltage as it discharged. We used National Instruments PCI-6230
digital acquisition board to measure voltage drop across the resistor
and calculate the resulting power. To measure energy consumed by

Resistor

PCI-6230 Power Supply

Figure 6: Profiling Hardware.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

In
te

ra
ct

io
ns

Users

Face Low Face Moderate

Face High No Face Low

No Face Moderate No Face High

Figure 7: Distribution of application security levels in inte-
ractions with and without faces.

MultiLock, we first measured the baseline power of the phone. To
do so we put the device in airplane mode, thus disabling all radios;
disable screen auto-brightness; and interact with the phone as one
would normally do after unlocking it (open apps, swipe through
home screen, pull down notifications bar). Next, we performed the
exact same steps, however with MultiLock running in the back-
ground. We found that the baseline power was 438mW while the
power when MultiLock was running was 479mW. Subtracting these
two, gave us 41mW which was the power demanded by MultiLock
while it ran in the background. To put this number into percep-
tive, an LTE radio, which has become a standard component of
modern smartphones and is heavily used demands 1.6W of active
power and 70mW when idle. Thus we argue that a power demand
of 41mW is not significant enough to have an adverse effect on the
smartphones battery life.

4.1 Interaction Characteristics
As MultiLock’s ability to unlock devices depends on the camera
capturing images of a user’s faces while interacting with the device,
we split the traces into 2 categories - those which contained a face,
and those which did not. A trace is deemed to not contain a face
if the Haar-Cascade mechanism we used for face detection fails to
find one in the interaction session. We found that most prominent
reason for the absence of a face in a trace is device usage in complete
darkness, for example in a dark room or outdoors at night. We sum-
marize our results in Figure 7 which shows the distribution of user

MOBIQUITOUS’19, November 12–14, 2019, Huston, TX Shravan Aras, Chris Gniady, and Hari Venugopalan

interactions with different levels of application sensitivity (High,
Moderate, and Low), with and without faces (Face, No Face). We
observe that for the majority of the user interactions, except user 3
and 7, there is a face present 95% of times on average. Furthermore,
the sessions which do not contain a face, are largely or entirely
dominated by low sensitivity application interactions. As Multi-
Lock does not require low sensitivity applications to pass through
the face authentication phase, users would be able to easily open
these without having to fall back upon time-consuming secondary
authentication methods. For instance, while user 3 has relatively
fewer interaction sessions with a face, 65% when compared to 95%
on average for other users, 14% of their non-face sessions invoked
only low sensitivity applications.

We argue that for traditional face authentication system, user
3 and 7 would have to fall back on secondary authentication for
all interactions without a face, which amounts to 31% and 33% re-
spectively. MultiLock, on the other hand, would take advantage
of its graded security design, and only require the user to use se-
condary authentication for interactions with higher security levels,
which are only 17% and 26% respectively of the overall interactions.
Thus MultiLock is highly beneficial even in scenarios with adverse
lighting condition as seen in the case of user 3 and 7. Subsequently,
in the next few sections, we focus solely on interactions which
contain faces in them to analyze how MultiLock performs.

4.2 Granting Application Access
In order to analyze the degree to which MultiLock is able to grant
users access to applications of various sensitivities, we run it on the
interaction traces obtained from users. Further, we divide our analy-
sis into MultiLock Static, when no dynamic retraining is performed,
and MultiLock Dynamic, which performs retraining as outlined in
Section 3.4.

Figure 8 shows the distribution of interactions for each user
that MultiLock was able to open, as well as those that required
MultiLock to fall back on secondary authentication. In the case
of both MultiLock static and MultiLock dynamic, low sensitivity
applications are opened without the need for facial authentication.
We observe that in case of MultiLock static, as shown in Figure 8
we were able to server 81.1% of user interactions on average across
all users without requiring to fall back on secondary authentication.
Out of these, on an average 2.8% and 11.5% of the interactions cor-
respond to high and moderate sensitivity applications respectively,
while the remaining 66.7% of interactions involve low sensitivity
applications. Further, unlike most of the users, a large number of in-
teractions for user 7 are related to moderate sensitivity applications.
It is interesting to note that even in the case of user 7, for which
79.4% of the interactions where for moderate sensitivity applicati-
ons, MultiLock static is still able to open 58% of those interactions
without any user intervention.

We can see further improvements when dynamic retraining is
added to MultiLock, as shown byMultiLock Dynamic in figure 8. As
MultiLock Dynamic, updates the model every-time a user is forced
to fall back on secondary authentication provided the conditions
outlined in Section 3.4 are met, it adapts to various adverse lighting
conditions thus giving us an overall better performance. This im-
provement is most notable for high sensitivity applications. Where

0%

20%

40%

60%

80%

100%

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

In
te

ra
ct

io
ns

Users

Low Opened Moderate Opened
Moderate Unopened High Opened
High Unopened

1 2 3 4 5 6 7 8

Figure 8: Distribution of application sensitivity MultiLock
Static and MultiLock Dynamic can open.

MultiLock static opened 18.1% of the total high sensitivity applica-
tion interactions on average, MultiLock Dynamic is able to open
47.5% of the total high sensitivity applications. This improvement
is more than double that of MultiLock Static. This improvement is
most notably seen in user 4, who had a large number interactions
both indoors and outdoors, thus giving rise to some rather unique
lighting conditions. In this case, MultiLock Dynamic is able to open
2.6 times more high sensitivity applications automatically, when
compared to its static counterpart. Overall, MultiLock Dynamic
allows the user to open more high and moderate sensitivity ap-
plications under adverse lighting conditions without the need to
fall back on secondary authentication. Finally MultiLock Dynamic
had an average success rate of 88% of overall interactions without
requiring users to change their normal use flow to face the camera
directly as is the case with traditional face authentication methods.

4.3 Background Execution
MultiLock runs as a background process, while users interact with
their device, and ideally, we would like it to run for as short du-
ration as possible to reduce any potential impact on battery life
and performance. Figure 9 presents background execution time of
MultiLock Dynamic. The runtime is capped by our timeout period
of 30 seconds. While the runtime is affected by several factors such
as lighting conditions, types and time of applications that users
interacted with, 50% of interactions across all users required the
algorithm to run only 8.2 seconds on an average. We also observe
that for both user 1 and 3, 80% of their interactions required the algo-
rithm to run for 11 seconds or less. In case of user 1, the interactions
were relatively short, accessing the phone to interact with low sen-
sitivity applications and then immediately turning off the screen.
As for user 3, most of the interactions were for moderate sensitivity

MultiLock: Biometric-Based Graded Authentication for Mobile Devices MOBIQUITOUS’19, November 12–14, 2019, Huston, TX

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

In
te

ra
ct

io
ns

Time[sec]

User 1 User 2 User 3 User 4

User 5 User 6 User 7 User 8

Figure 9: Cummulative distribution of how long MultiLock
runs in the background for each user.

and MultiLock was able to establish a confidence threshold well
below the threshold for high sensitivity applications (one of the
termination conditions). In case of the remaining users, MultiLock
was required to run longer in the background, due to poor lighting
conditions when users interacted with low sensitivity applications.
Subsequently, we argue that in majority situations MultiLock main-
tains a low overhead by terminating early by authenticating the
user, while being bound by our timeout interval, preventing it to
run indefinitely under unfavorable lighting conditions.

5 RELATEDWORK
There has been a considerable amount of research in using graded
security on mobile devices. Ben-Asher et.al. [3] surveyed 465 parti-
cipants to understand how users perceived the security of various
applications and researched the use of various biometric methods
for graded authentication. Similarly Dorflinger et.al. [9] conducted
a survey using focus groups to determine user willingness to use
graded security. They found that different users perceive the secu-
rity of same resources differently. Overall, users stated it would be
inconvenient to use different biometric methods to protect diffe-
rent resources. MultiLock; however, uses only facial recognition
to achieve graded security, thus not impacting user convenience.
The idea of using varying levels of authentication for protecting
different resources on a system is fairly old and well studied. Tra-
ditionally, systems like UNIX [20] relied on explicitly setting user
permissions, delegating users to groups and setting permissions
on files to offer a level of graded security access to the complete
system.

Researchers in the past have also proposed various passive sen-
sing techniques to authenticate users and provided graded access
to various applications, based on their sensitivity. Zhu et.al. pro-
posed SenSec [26], a system which would constantly run in the
background, collecting data from phone sensors, and authenticate
the users based on how they use their phone, via a gesture mo-
del. Similarly Feng et.al. [11] make use of touch input (pinching,

zooming, etc.) as the user interacts with the touch screen to conti-
nuously authenticate the user in the background. Their approach;
however, requires a custom sensor glove to complement the data
from smartphone. Xu et.al. [25] also proposed a system that moni-
tored user interactions in the background using touch interactions,
training a SVM [14] and using it to authenticate users. Other back-
ground authentication methods proposed such as SenGaurd [21],
also make use location and accelerometer data to perform passive
authentication. Methods like KeySens [10] have also been proposed
which authenticate users automatically based on their typing pat-
tern, using the on-screen keyboard. Niinuma et.al. [17] proposed
a posture invariant system to passively authenticate users using
a laptop camera, as they worked on it. However, unlike laptops,
which are stationary on the desk or lap, mobile phones suffer from
constant camera shake as users interact with them. This makes the
problem of authentication even more challenging for MultiLock
due to lack of focus in most frames. Additionally, recording video
continuously in the backgroundwould also negatively affect battery
life of a handheld device.

Multilock is agnostic to the underlying face recognition algo-
rithm used. We currently use the popular Local Binary Pattern
Histogram (LBPH) for face recognition, by Ahonen et. al. [1], pri-
marily due to its computation simplicity as our system is designed
to run on mobile devices. An algorithm similar to the LBPH that
was implemented is the Active Appearance Model (AAM) [7]. An
Active Appearance Model (AAM) is an integrated statistical mo-
del which combines a model of shape variation with a model of
the appearance variations in a shape-normalized frame. An AAM
contains a statistical model if the shape and gray-level appearance
of the object of interest which can generalize to almost any valid
example. Matching to an image involves finding model parameters
which minimize the difference between the image and a synthesized
model example projected into the image. However, this method is
more computationally expensive than LBPH for cellular devices.

Other popular face recognition algorithms that can be employed
include Eigenfaces method and the Fischerfaces method. The Eigen-
faces described in [24] uses Principal Component Analysis (PCA)
to reduce the high dimensional image into lower dimensions along
which there is maximum variance. The Eigenfaces method does not
take class labels into account, and hence if variance is generated
from an external source, the axes with maximum variance need not
necessarily contain any discriminative information, and classifica-
tion becomes impossible. The Fischerfaces method as proposed by
Sir R. A. Fischer in [12] takes class labels into account as well and
identifies the lower subspace with maximum variance across each
class.

While a plethora of research has been conducted in the field
of face recognition, passive user authentication, and methods to
provide graded security, to the best of our knowledge using fa-
cial authentication in the background to provide graded security
for users has not been done before. With the approach proposed
in MultiLock, smartphones can authenticate their users automa-
tically, varying the severity by different application types, using
well-proven and tested facial authentication algorithms.

MOBIQUITOUS’19, November 12–14, 2019, Huston, TX Shravan Aras, Chris Gniady, and Hari Venugopalan

6 CONCLUSIONS
Biometric authentication mechanisms such as face-based authenti-
cation have always been cumbersome for users to use since they
required users to deviate from their normal workflow and stare
at the camera. The problem has been exasperated due to variable
lighting conditions while users use their devices, which prevents
the system from obtaining a satisfactory sample for face recognition
algorithms. In this paper, we have analyzed how users interacted
with their devices after turning on the screen and proposed to ap-
ply a graded security mechanism dividing the applications up into
low, moderate and high sensitivity. Further we observed that users
interacted with high sensitivity applications for only 15% of their
interactions on average. We used this observation to propose the
design of MultiLock, a passive, graded authentication mechanism
which runs in the background using face recognition, thus freeing
users of the burden of manually unlocking the device. With Mul-
tiLock we allow users to access different sensitivity applications
by varying the sureness that the device is being used by its true
user. The lower the application sensitivity the less sure MultiLock
is during authentication that the device is being used by a true user.
Even thoughMultiLock is not tied to a particular face recognition al-
gorithm, we implemented it as an android application, and used the
Local Binary Pattern Histogram method for face recognition, due to
its computation simplicity, allowing it to run onmobile devices with
minimum overhead. In our trace-driven analysis using MultiLock,
we found that 88% of all the interaction traces across users could
be opened based on the application sensitivity without any user
intervention. We also measured MultiLock’s power consumption
to be only 41mW when running in the background, allowing it to
run comfortably in the background without draining device battery.
Finally, we believe that MultiLock design described in this work
provides users with a hassle-free passive authentication system,
based on well researched and ever-improving field of face-based
authentication techniques.

REFERENCES
[1] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. 2006. Face description

with local binary patterns: Application to face recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 28, 12 (2006), 2037–2041.

[2] Hadid A. Ahonen T. and Pietikainen. 2004. Face Recognition with Local Binary
Patterns. Computer Vision. (2004).

[3] Noam Ben-Asher, Niklas Kirschnick, Hanul Sieger, Joachim Meyer, Asaf Ben-
Oved, and Sebastian Möller. 2011. On the need for different security methods
on mobile phones. In Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services. ACM, 465–473.

[4] Debnath Bhattacharyya, Rahul Ranjan, Farkhod Alisherov, and Minkyu Choi.
2009. Biometric authentication: A review. International Journal of u-and e-Service,
Science and Technology 2, 3 (2009), 13–28.

[5] Frank Breitinger and Claudia Nickel. 2010. User Survey on Phone Security and
Usage.. In BIOSIG. 139–144.

[6] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[7] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. 2001. Active
appearance models. IEEE Transactions on Pattern Analysis & Machine Intelligence
6 (2001), 681–685.

[8] Lorrie Faith Cranor and Simson Garfinkel. 2005. Security and usability: designing
secure systems that people can use. " O’Reilly Media, Inc.".

[9] Tim Dörflinger, Anna Voth, Juliane Krämer, and Ronald Fromm. 2010. “My
smartphone is a safe!” The user’s point of view regarding novel authentication
methods and gradual security levels on smartphones. In Security and Crypto-
graphy (SECRYPT), Proceedings of the 2010 International Conference on. IEEE,
1–10.

[10] Benjamin Draffin, Jiang Zhu, and Joy Zhang. 2013. Keysens: Passive user au-
thentication through micro-behavior modeling of soft keyboard interaction. In

Mobile Computing, Applications, and Services. Springer, 184–201.
[11] Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan Carbunar, Yifei Jiang,

and Ngac Ky Nguyen. 2012. Continuous mobile authentication using touchscreen
gestures. In Homeland Security (HST), 2012 IEEE Conference on Technologies for.
IEEE, 451–456.

[12] R. A. Fischer. 1936. The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics 7, 2 (1936), 179–188.

[13] Dieter Gollmann. 2010. Computer security. Wiley Interdisciplinary Reviews:
Computational Statistics 2, 5 (2010), 544–554.

[14] Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and Bernhard Schol-
kopf. 1998. Support vector machines. Intelligent Systems and their Applications,
IEEE 13, 4 (1998), 18–28.

[15] Jiri Matas, Miroslav Hamouz, Kenneth Jonsson, Josef Kittler, Yongping Li, Con-
stantine Kotropoulos, Anastasios Tefas, Ioannis Pitas, Teewoon Tan, Hong Yan,
et al. 2000. Comparison of face verification results on the XM2VTFS database.
In Pattern Recognition, 2000. Proceedings. 15th International Conference on, Vol. 4.
IEEE, 858–863.

[16] Stephen Milborrow, John Morkel, and Fred Nicolls. 2010. The MUCT landmarked
face database. Pattern Recognition Association of South Africa 201, 0 (2010).

[17] Koichiro Niinuma and Anil K Jain. 2010. Continuous user authentication using
temporal information. In SPIE Defense, Security, and Sensing. International Society
for Optics and Photonics, 76670L–76670L.

[18] opencv dev team. 2018. Open Computer Vision Android SDK. http://docs.opencv.
org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html.
(2018).

[19] opencv dev team. 2018. Open Computer Vision Library. http://opencv.org/.
(2018).

[20] Dennis M Ritchie and Ken Thompson. 1974. The UNIX time-sharing system.
Commun. ACM 17, 7 (1974), 365–375.

[21] Weidong Shi, Feng Yang, Yifei Jiang, Feng Yang, and Yingen Xiong. 2011. Sen-
guard: Passive user identification on smartphones using multiple sensors. In
Wireless and Mobile Computing, Networking and Communications (WiMob), 2011
IEEE 7th International Conference on. IEEE, 141–148.

[22] Ben Shneiderman and Catherine Plaisant. 1987. Designing the user interface:
Strategies for effective human-computer interaction. (1987).

[23] Shari Trewin, Cal Swart, Larry Koved, Jacquelyn Martino, Kapil Singh, and Shay
Ben-David. 2012. Biometric authentication on a mobile device: a study of user
effort, error and task disruption. In Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, 159–168.

[24] M. Turk and A. Pentland. 1991. Eigenfaces for Face Detection/Recognition.
(1991).

[25] Hui Xu, Yangfan Zhou, and Michael R Lyu. 2014. Towards continuous and passive
authentication via touch biometrics: An experimental study on smartphones. In
Symposium On Usable Privacy and Security (SOUPS 2014). 187–198.

[26] Jiang Zhu, PangWu, XiaoWang, and Juyong Zhang. 2013. Sensec: Mobile security
through passive sensing. In Computing, Networking and Communications (ICNC),
2013 International Conference on. IEEE, 1128–1133.

http://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html
http://opencv.org/

	Abstract
	1 Introduction
	2 Motivation
	3 Design of MuliLock
	3.1 Facial Authentication
	3.2 Security Manager
	3.3 MultiLock Operation
	3.4 Dynamic Training Optimization
	3.5 Implementation Details
	3.6 Threat Model

	4 Experimental Results
	4.1 Interaction Characteristics
	4.2 Granting Application Access
	4.3 Background Execution

	5 Related Work
	6 Conclusions
	References

