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Abstract
Biohacker /’bio,haker/ Noun

1. A person who manipulates their metabolic state using
sensors, injected hormones, nutrients, physical activity,
computer systems, and artificial intelligence.

2. An enthusiastic and curious person who learns about
their own biology and metabolism through experimenta-
tion on them self.

3. A person who uses computers to gain access to some-
one’s metabolic state.

There are 8.4 million people living with Type 1 Diabetes
(T1D) worldwide [7] and they are all hard-core biohackers.
They inject a dangerous hormone, insulin, that could kill them
in a matter of hours multiple times a day, they measure their
metabolism using sensors, and they constantly run experi-
ments to better understand how their bodies will respond to
life — food, exercise, stress, sex, alcohol, drugs and so on.
Based on what they learn from their experimentation, they
strive to master their metabolism using synthetic insulin. Our
hypothesis is that with the right software support for biohack-
ing, we can turn a T1D diagnosis from a death sentence into
an indicator of longevity, where people living with T1D will
be expected to live longer than their otherwise healthy peers.

This paper we present MetabolicOS, a software system that
we design and implement for biohacking and to manage T1D.
This paper is about our real-world experiences building and
running MetabolicOS.

1 Introduction

Our focus in this paper is on T1D. T1D is a metabolic disorder
where an individual’s pancreas stops producing insulin. To
compensate for the lack of insulin production, they inject
synthetic insulin. The dynamics of insulin and the impact of
various intrinsic and extraneous factors on glucose complicate
the management of T1D [29].

One common way to manage T1D is through automated
insulin delivery systems. Automated insulin delivery systems
read sensor values every five minutes. Using these sensor
values, they calculate insulin needs and adjust an insulin pump
automatically. Several commercial [1,2,6] and open source
[13, 17] automated insulin delivery systems exist today.

However, current automated insulin delivery systems have
two major shortcomings. First, they are complex. From the
open source world, we look at the OpenAPS automated in-
sulin delivery systems. OpenAPS’ core dosing logic consists
of 1192 lines of Javascript code, has 63 input and configura-
tion parameters, and 90 branch statements — all of which have
subtle interactions and can directly affect dosing decisions.
Although it is effective at managing T1D, the complexity of
its software makes it risky and difficult to update its imple-
mentation. Second, they are inflexible. Closed-loop systems
provide no forms of extensibility — no apps to plugin, no abil-
ity to try new algorithms, no ability to personalize models —
you simply get whatever they choose to provide to you. Open
source automated insulin delivery systems can be updated,
but their complexity makes it difficult to update the parts that
matter: the dosing and prediction logic.

This paper presents MetabolicOS, a new system that we
design and implement from the ground up specifically for
adaptability, extensibility, and simplicity in automated insulin
delivery systems. For adaptability, MetabolicOS introduces
a novel, added glucose abstraction that uses the amount of
glucose added to the body in a given time interval to cal-
culate the amount of insulin to dose. The abstraction helps
MetabolicOS adapt to all environmental factors since all of
them result in a change in the amount of glucose in the body.
For example, food intake increases added glucose until it is
digested and aerobic exercise decreases added glucose as the
muscles consume glucose for energy.

MetabolicOS supports diverse applications that help man-
age T1D. This provides extensibility to users to pick appli-
cations that are best suited to manage their T1D. Some users
may prefer to use automated insulin delivery while others
may prefer alerts to take manual injections. MetabolicOS



is extensible to support all such applications. MetabolicOS
also allows applications to use any algorithm to calculate
insulin doses. MetabolicOS restricts these algorithms to re-
main completely functional at confines them to only issue
pump commands. On top of extensibility, this also security
by ensuring that arbitrary algorithms cannot modify state and
introduce undesired side-effects. MetabolicOS is also simple
in that the core security and safety mechanisms that account
for mispredictions are based on simple physiological models
that only take up 4 lines of code.

We show results on one individual running different al-
gorithms to manage their T1D using MetabolicOS for 3.5
months. Having a real human use MetabolicOS to manage
their insulin needs meant that MetabolicOS had to take into
account the challenges posed by the practicalities of daily
life in the real world. Overall, the individual ran 4 different
algorithms at different points in time, before settling on an
ML algorithm based on the added glucose abstraction that
proved to be most effective for them. To show that the added
glucose abstraction generalizes to other physiological factors,
we ran experiments with 30 virtual humans in a simulator.
ML-based added glucose prediction proved to be more ef-
fective than physiological algorithms for managing T1D on
24/30 individuals (80%). This shows that the abstraction is
general but is not a silver bullet for managing T1D, thereby
reinforcing the need for MetabolicOS to safely and securely
support algorithms from other abstractions to support all pos-
sible individuals.

Our contributions include:

* The design and implementation of MetabolicOS that
provides adaptability, extensibility and simplicity in cal-
culating insulin doses.

* A novel added glucose abstraction for insulin delivery
that is compatible with all environmental factors influ-
encing the amount of glucose in the human body.

* Account of our experience of running MetabolicOS with
a real human which reveals the need to address practi-
cal challenges for successful adoption of algorithms for
automated insulin delivery.

2 Background on T1D

Type 1 diabetes is a metabolic condition in which the body’s
immune system mistakenly attacks and destroys the insulin-
producing cells in the pancreas. Insulin is a hormone crucial
for regulating blood sugar levels by facilitating the uptake of
glucose from the bloodstream into cells for energy production.
In T1D, the absence or insufficient production of insulin re-
sults in uncontrolled high blood sugar levels (hyperglycemia).

People with Type 1 diabetes must actively manage their glu-
cose levels by injecting synthetic insulin. They may choose

to do so through calculated amounts of manual insulin injec-
tions or or use subcutaneous insulin delivery pump systems
for automatic calculation which may be coupled with a sus-
pension mechanism to deliver basal or bolus insulin. Basal
insulin refers to the background insulin needed to maintain
blood sugar levels between meals and overnight, typically
administered as long-acting or intermediate-acting insulin.
Bolus insulin, on the other hand, is taken with meals to man-
age the rise in blood sugar levels after eating. Too much
insulin may lead to hypoglycemia and too little insulin will
lead to hyperglycemia. Hypoglycemia occurs when blood
sugar levels drop below a certain threshold, leading to symp-
toms such as shakiness, confusion, and sweating, and can be
treated with fast-acting carbohydrates like glucose tablets or
juice. Hyperglycemia, conversely, occurs when blood sugar
levels are too high, causing symptoms like increased thirst,
frequent urination, and fatigue. The extreme cases, classified
as level 2, of both conditions can have immediate and long
term detrimental effects on health that can potentially lead
to death. Knowing how sensitive or resistant a person is to a

Glucose level Importance

55 mg/dI Below 55 mg/dl is considered severe low glucose

70 mg/dl Below 70 mg/dl is considered mild low glucose

82 mg/dl The average glucose for healthy people pre meal

90 mg/dl Our pre-meal glucose target for people living with T1D
137 mg/dl The average peak glucose for healthy people post meal
140 mg/di Our goal for peak glucose for people living with T1D
180 mg/dl Above 180 mg/dl is considered high glucose

250 mg/dl Above 250 mg/dl is considered severely high glucose

Figure 1: Importance of different blood glucose values

fixed amount of insulin is important to plan timely delivery
and treatment. Insulin sensitivity factor (ISF) represents how
much one unit of insulin lowers blood sugar levels, helping
to calculate the appropriate insulin dose needed to correct
high blood sugar. Insulin active refers to the duration during
which insulin remains effective in lowering blood sugar lev-
els. Insulin on board (IOB) measures the amount of insulin
still working in the body from previous doses, influencing
subsequent insulin dosing decisions.

Time in range (TIR) refers to the percentage of time spent
within the target blood sugar range, typically between 70-180
mg/dL (3.9-10 mmol/L). Recommended values for TIR aim
for at least 70-80% of time spent in range, indicating effective
blood sugar management and reducing the risk of diabetes-
related complications.A general outlook on interpreting blood
glucose values is provided in Figure 1. Understanding these
concepts is crucial for individuals with T1D and their health-
care providers to optimize insulin therapy and maintain blood
sugar levels within the target range for better overall health
and quality of life.



3 Motivating Example

Let us consider the example of Bob, who lives with T1D. In
his initial year grappling with the condition, he manually ad-
ministered insulin using a syringe when required. However,
he soon realized the unpredictability of his body’s response
to various factors like food, exercise, stress, and illness. Main-
taining balanced glucose levels became a daunting task and
this made Bob switch to a state of the art commercial insulin
delivery system. While things did get better than manually
calculating and injecting insulin, he soon found they couldn’t
offer the precise control he needed. They also remained closed
systems, unable to accommodate Bob’s unique physiological
needs.

Taking matters into his own hands, Bob decided to explore
open source insulin delivery systems made public by the T1D
biohacking community, shared by people who have the same
condition and have managed it successfully for several years.
He adopted and tried a few of their most widely used insulin
delivery systems but that was not the end of it. Every time

180 A

jump in blood glucose followed

Anaerobic activity causes a intial
by a decline as indicated

160 A

140 A

120

Aerobic Activity cause
a decline in blood
glucose as indicated

i

Blood Glucose (mg/dL)
=
(=]
o

o«
o
L

v

T T T T T

0 20 40 60 80
Time Steps

60 1

Figure 2: Anaerobic and Aerobic activity effects on the blood
glucose of a person with Type-1 Diabetes. The blue line shows
the blood glucose curve for anaerobic activity while the or-
ange line shows the curve for aerobic activity.

Bob eats a meal, he has to announce his meal to his insulin
delivery system and input the exact amount of carbohydrates
he has eaten for accurate insulin dosing. If Bob overestimates
the amount of carbohydrates in his meal, his blood glucose
can drop below the recommended range and underestimation
can lead to high blood glucose. Other factors like meal fat
composition may also influence how and when the glucose
absorption occurs from the digestion process. Expecting Bob
to accurately predict his food composition to help administer
insulin can be quite precarious. Bob also faces challenges
when he hits the gym(anaerobic) and cycles to work(aerobic).
During anaerobic exercise, such as weightlifting, Bob experi-

ences an initial rise in blood glucose followed by a drop, while
aerobic exercise, like cycling, causes a decrease in blood glu-
cose levels initially, followed by a later increase as shown in
Figure 2. Bob’s insulin delivery system struggles to adapt to
these fluctuations so Bob switches off his system, manually
injects or inputs a temporary basal rate. These challenges pre-
vent Bob from using his insulin delivery system in a complete
‘closed-loop’.

Bob wanted these challenges to be averted. He was also
open and eager to run ML on himself for insulin delivery,
as he soon came to know of their predictive power through
literature. Most of the previous open source systems based
their decisions on complex physiological calculations cou-
pled with complex software which made the system hard to
interpret and understand. However he was unsure if a general
one fit for all ML would be able to model his own physiology
well enough to achieve tight control and was a bit hesitant in
trusting these models considering mispredictions could have
serious repercussions.

With MetabolicOS, Bob can run any ML model on himself
in a trusted and safe manner. The model is personalized to
Bob’s unique physiology. It uses a different abstraction rather
than carbohydrate count, enabling him to not worry about
calculating his meal compositions manually and being able
to establish control for any glucose addition event other than
meals.

Bob is a real human. He has been running the MetabolicOS,
which administers his insulin, on himself for the past 3.5
months.

4 Overview

In this paper, we present MetabolicOS, an adaptable, exten-
sible and simple system that supports apps to manage T1D.
MetabolicOS aims to provide extensibility to support different
types of applications that help manage T1D.

From an algorithmic standpoint, adaptability provides the
ability to navigate through differing scenarios introduced by
dynamically changing factors such as food intake, exercise,
and stress levels. However, implementing separate mecha-
nisms to address each scenario poses challenges in terms of
correctness and maintainability. Therefore, MetabolicOS ad-
vocates for the use of generalized abstractions in algorithm
design. These abstractions allow for coverage of different
scenarios while ensuring simplicity in implementation.

Viewed from a systems perspective, extensibility empowers
applications to offer rich functionality to users, while simplic-
ity serves to minimize potential attack vectors. Extensibility
helps cater to a wide range of users with varied needs based
on their physiologies and preferences. However, unrestricted
code execution in pursuit of extensibility introduces vulnera-
bilities that malicious actors can exploit, posing grave risks,
particularly in the context of T1D, where attacks can have
life-threatening consequences. Thus, we introduce security



mechanisms that restrict applications from directly interacting
with the CGM and insulin pump. These security mechanisms
have to be simple since that would give us the ability to reason
about their correctness and reduce the likelihood of vulnera-
bilities, thereby reducing the attack surface.

In this section, we provide a high-level overview of
MetabolicOS’s architecture. We provide a detailed account
of MetabolicOS’s adaptability, extensibility and simplicity
aspects in the next 3 sections.
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Figure 3: Overall architecture for MetabolicOS.

4.1 System architecture

Figure 3 shows our overall system architecture. At the core of
our overall architecture is an iOS app, called the BioKernel.
The BioKernel is the component that interacts with the CGM
and insulin pump hardware, runs safety mechanisms, and
produces event logs that other components use to learn the
state of the system, which we will look into detail when we
discuss the simplicity of MetabolicOS.

To support rich functionality, the BioKernel stores event
logs which is then consumed by other applications. These
could include a watchdog for monitoring an individual’s
metabolic state and triggering alerts in case of glycemic im-
balance, an automated insulin delivery application running in
closed-loop, an application to share metabolic updates with a
health care professional etc.

S Adaptability

Adaptability of a system is the ability of the system to ac-
commodate and operate under changed circumstances. The

MetabolicOS insulin delivery system has the ability to adapt
to 1) different daily events 2) different humans and 3) different
decision algorithms.

Motivated by the exaample of Bob, we build the adaptabil-
ity of the MetabolicOS on three core principles (a) Move past
the carbohydrate abstraction to model any glucose addition
event (b) Personalizing the model to each individual for pre-
cise delivery (c) Run any machine learning model with any
abstraction on the MetabolicOS.

Most current insulin delivery systems that run on real hu-
mans are powered by reactive control algorithms and base
their decisions primarily on carbohydrate input and meal an-
nouncements from the user [20]. Some recent approaches
have explored automated meal detection [23,25]and carbo-
hydrate estimation [14, 27] through predictive algorithms
[11,28]. However, these systems require some level of manual
intervention, carbohydrate count entry and meal announce-
ments from the user, which takes away the system from being
truly ‘automated’. Another major challenge faced by carbo-
hydrate based decision making in modeling glycemic control
for events other than meals. These include controlling glucose
levels during and after exercise, variable meal sizes/timings,
unusual snacking, sleep disruption and irregular lifestyle ac-
tivities that a user may indulge in.

To move past these challenges, we feel that different ab-
stractions, other than carbohydrate count, need to be explored
as the primary factor in determining how much insulin needs
to be delivered. In this paper, we introduce the added glucose
abstraction as the main motivator for the MetabolicOS on
how much insulin needs to be delivered. Added glucose refers
to the amount of glucose that is added to the body over a
particular time frame. This can be calculated directly using
just the CGM and insulin readings from the user.

5.1 Machine Learning with Added Glucose

By combining the predictive power of machine learning with
added glucose, our goal is to establish tighter blood glucose
control by predicting future metabolic states of people living
with T1D. Our training data is derived from the historical
CGM readings and insulin readings of an T1D individual. We
have 30 simulated individuals provided by FDA-approved
UV/PADOVA Type 1 diabetes simulator [15]- 10 adults, 10
adolescents and 10 children- all with different physiological
and biological parameters. Each individual’s historical data
acts as its own dataset as we train personalized models. We
calculate the amount of glucose added to the blood over a
time period to give a value of added glucose at future time
steps mathematically by deriving insulin on board, active in-
sulin from the readings and using insulin sensitivity factor of
the particular individual, providing us with the target labels.
We look ahead one hour and predict added glucose in our
implementations. Our approach eliminates the need for man-
ual labeling or annotations from users, as we automate label



generation based on direct calculations from the individual’s
readings. This efficiency streamlines the training process for
machine learning models. Consequently, we obtain a dataset
for each individual, comprising of added glucose values at
different time steps over a 30-day period, which serves as our
target variable for prediction.

The goal of the training process is to build models to predict
the added glucose of an individual one hour ahead of time in
order to provide timely delivery of insulin, which is modeled
as a regressive task. Different machine learning models were
trained and evaluated on each of the individual’s historical
data and run on the MetabolicOS, to support the validity of
our added glucose abstraction while ensuring extensibility
and adaptability of our system. Each model type is trained
on every individual’s data separately and evaluated on that
particular individual. Since we have 30 individuals and 4
types of models, a total of 120 models have been trained and
tested.
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Figure 4: Depiction of added glucose vs time for one of the
adult T1D individuals. The right side showcases neural net-
work predictions trained with mean squared error loss while
left side depicts our custom loss neural network model

Our first implementation is a traditional Support Vector Re-
gressor(SVR). In ensemble methods, Random Forest Regres-
sor and XG Boost Regressors were evaluated on the Metabol-
icOS. Our XG Boost regressor creates 100 decision trees
sequentially, with each tree trying to correct the errors made
by the previous ones. We use a learning rate of 0.1, controlling
the contribution of each tree in the ensemble. Our Random
Forest Regressor is created as an ensemble of 100 decision
trees. Our final model used is also currently running on our
real human is a neural network that was trained using a custom
loss function. Our neural architecture is a three layer network
with ReLU activations throughout with a single output neuron

for regression. We have created a custom loss function termed
‘peak loss” which places emphasis on the peaks of added glu-
cose through weighted penalization. We aim to model the
peaks as accurately as possible shown in Figure 4 as high
amounts of added glucose cause large spikes in blood glucose
values if insulin is not administered in a timely manner.

Our testing is done by simulating each individual for 6
continuous days. This is done with 5 random seeds, leading
to a total of 30 days of testing period for each individual.
The insulin delivery decisions are based on the added glucose
predictions. While the direct output of our models is the added
glucose one hour ahead, we place more emphasis on how well
the complete system performs in maximizing blood glucose
time in the range of each individual. We record the time
in range, time in hyperglycemia, time in hypoglycemia and
establish a comparative analysis between these models.

We also use a reactive model as a point of comparison.
This is a simple insulin absorption physiological model that
directly calculates the amount of insulin that needs to be
delivered or withheld CGM and insulin readings. These cal-
culations are standard calculations that people who inject
insulin manually use to determine dosing, making them easy
for people who manage T1D or their medical care team to
understand. The difference in our system is that we run these
calculations automatically and every five minutes to adjust to
the latest sensor readings. This basic formulation is a standard
formulation used in most automated insulin delivery systems.
In our evaluation, even the most traditional model crushes
the reactive delivery model on the simulated individuals and
on a real human, showing why it is important for automated
insulin delivery systems to have a practical way to adopt ML.

Alternatively, we could have designed a more sophisticated
physiological predictive model, but this type of model has two
shortcomings. First, more sophisticated models require a more
complex implementation and deeper reasoning to understand
the intuition behind how they work. In MetabolicOS, we value
simplicity as a core first principle. Second, the underlying
physiological models are approximations — humans are not
second-order differential equations.

The reactive model suffers primarily from being unable
to model postprandial hyperglycemia and alternate glucose
addition events, a drawback which we initially mentioned.
We choose to use ML to predict future metabolic state and
our predictive ML model detects the entire digestion curve
accurately. The added glucose abstraction hence does not
require carbohydrate entry of meal announcements from the
user. Since we model our prediction and mitigation on any
form of glucose addition to the body, the MetabolicOS is
not restricted to meals and can manage insulin delivery for
all lifestyle events like exercise, sleep etc, providing a more
generalized approach. The major concern of most systems
using predictive models hindering widespread adoption is the
safety of the user when mispredictions occur. The underlying
security logic[cite biokernel] of MetabolicOS which is beyond



the scope of this paper allows the predictive ML model to
borrow insulin from the future to inject insulin proactively.
In general, it uses the predictive ML commands as long as
they stay within a fixed bound of what the reactive safe model
would have sent.

5.2 Model Personalization

Our system adapts its decisions to each individual as well
rather than just the different events in life. Each person has
a different metabolism and a unique physiology. Our system
supports insulin delivery to humans with diverse physiology
and lifestyles, eschewing a one-size-fits-all approach in favor
of precision medicine through personalized models for each
individual. Building upon our aforementioned benefit on auto-
matic label generation with the added glucose abstraction,we
use historical glucose and insulin data from each individual to
generate added glucose labels and train a personalized model.
This helps us understand each individual’s own lived experi-
ences and the uniqueness in their body’s reaction to different
events of glucose addition. This also helps us account for
trends caused by differences in genetic, environmental, be-
havioral and lifestyle factors rather than a one decision for all
approach.

Different users place importance on different aspects of
a machine learning model that they want to control life or
death decisions. While some users are fine with a black box
model that provides them with the best TIR, some may prefer
models that they can understand,interpret and trust enough to
run on their own bodies. Different ML models may also work
better for certain humans based upon the different underly-
ing trends on how their bodies react to glucose, insulin and
their unique lifestyle events. Users should be able to swap
out, to upgrade or revert back and try models in a safe and
trusted manner. MetabolicOS provides a safe[cite biokernel]
and adaptable platform for users to try out and experiment
different ML models on themselves. We have evaluated differ-
ent models starting from conventional moving all the way to
deeper networks, on the system . Our real human Bob started
using a physiological model on the MetabolicOS, swapped
to a simple ML model and now runs a custom loss neural
network all over the period of just 4 months. While we firmly
believe machine learning is the way forward and aim to pro-
vide MetabolicOS for users to run any ML model they want,
we also strongly support an individual’s biological free will to
stick to a reactive algorithm. Hence the MetabolicOS system
can adapt to and support any predictive(both machine learn-
ing and physiological) and reactive algorithms to help users
safely biohack their bodies.

5.3 Other Abstractions

Added glucose is a strong step forward in the direction of
exploring different abstractions that power the insulin deliv-

ery process and move past manual carbohydrate count. While
added glucose exhibits higher TIR for most individuals than
the reactive model, for specific simulated individuals, the re-
active model was recorded to show better TIR in specific sce-
narios which motivates the exploration of other abstractions
to move past both added glucose and carbohydrate counting
for certain physiologies. Different people may need to use
different abstractions to model their physiology better just
how they may choose to incorporate different ML models
into their systems. Some possible abstractions that can be
explored further include modeling predictions and decision
making based upon Insulin Sensitivity Factor(ISF) and basal
rates. The insulin sensitivity of a person determines how much
insulin they need to mitigate for a particular glucose event.
A highly sensitive person requires far less insulin for a meal
while a less sensitive(resistant) individual will require a far
higher dose to bring them back into ideal blood glucose range.
This ISF value changes throughout the day and modeling this
factor directly could be a possible explanation to predict in-
sulin deliveries. Predicting basal rates directly is also worth
exploring in the future since this helps us tackle the insulin
delivery problem directly at its core without other underlying
calculations.

6 Extensibility

MetabolicOS provides two types of extensibility: algorithmic
extensibility and systems extensibility. For any given appli-
cation to manage T1D (such as automated insulin delivery),
algorithmic extensibility enables the application to employ
any algorithm that it sees fit to manage T1D. Systems exten-
sibility enables any application to interface with a CGM and
pump to help manage T1D (such as automated insulin deliv-
ery, collecting glycemic logs, alerts for manual injections etc).
In this section, we first explain how MetabolicOS provides
algorithmic extensibility and then explain how it provides
systems extensibility.

6.1 Algorithmic extensibility

We take the example of automated insulin delivery in closed
-loop to explain how MetabolicOS provides algorithmic ex-
tensibility. A proportional controller is a simple algorithm to
calculate insulin doses. At any given instant, a proportional
controller would keep track of the difference between the
amount of glucose present in an individual’s blood stream and
their desired target for the amount of glucose. Using the indi-
vidual’s insulin sensitivity factor, the proportional controller
injects insulin that would consume this difference. We visu-
alize this algorithm in Figure 5. While this algorithm is safe
in that it only injects insulin to account for excess glucose, it
is reactive in nature which makes it difficult to maintain tight
control. This is because synthetic insulin is slow and takes
the order of hours to act. By the time the injected insulin acts
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Figure 5: A proportional controller keeps track of the amount
of excess glucose and injects insulin to consume the excess
glucose. Such an algorithm can never put the user at risk, but
only provides loose control over T1D.

to account for the added glucose, the amount of glucose in
the blood stream would have changed.

Users seeking tighter control could prefer an algorithm that
predicts the amount of glucose that would be added in the
next few hours and inject insulin to consume that glucose
ahead of time. We visualize this algorithm in Figure 6. How-
ever, this algorithm would only effective when it is able to
accurately predict changes to the amount of glucose. This al-
gorithm would be dangerous for an individual whose glucose
levels vary wildly thereby making it difficult to accurately
predict changes to the amount of glucoses. For example, if
the algorithm incorrectly predicts the amount of glucose to
keep increasing (and thus, keeps injecting insulin), while the
actual glucose values keep decreasing, this algorithm would
push individuals to hypoglycemia.

Thus, different individuals may prefer to choose differ-
ent algorithms for automated insulin delivery based on their
physiology and desired level of control. A rigid system that
incorporates a particular algorithm forces individuals to only
use that algorithm even if it does not suit them. This system
provides very high security since it only runs trusted code,
but it offers limited flexibility and control to individuals. In
contrast, a system that allows arbitrary code execution to sup-
port any algorithm is also dangerous since insulin delivery
would inherit all vulnerabilities present in the arbitrary code
which could be fatal to individuals. This system provides
the most flexibility, but also provides the least security. With
MetabolicOS, we take a middle ground where we allow ar-
bitrary algorithms to administer insulin doses as long as the
algorithms are purely functional beyond setting parameters
to control the pump. This reduces the attack surface by elimi-
nating side effects that can rise by executing arbitrary code.

Predicted
glucose

130 A

Actual
glucose

-

%]

=]
L

] Predicted

excess glucose

100

Blood Glucose (mg/dl)

90 -----—---Target Glucose —————=-——ff-=—=====—=——-

80

T T T T
0 20 40 60 80 100 120
Time (hours)

Figure 6: A predictive algorithm predicts the amount of glu-
cose that will be in excess over a period of time and injects
insulin to consume that glucose ahead of time. Such an algo-
rithm can help provide tight control but can put individuals at
risk when making mispredictions.

At the same time, MetabolicOS enables flexibility to support
diverse individuals by allowing them to use any algorithm
to calculate insulin doses. We summarize this discussion in
Figure 7.

To protect users from accidental or intentional algorith-
mic mispredictions, MetabolicOS regulates the amount of
insulin administered by the algorithm using a safe, indepen-
dent physiological model. From an architecture perspective,
MetabolicOS isolates the physiological model within a com-
ponent called the BioKernel which interacts directly with the

pump.

6.2 Systems extensibility

MetabolicOS also offers extensibility to support different
types of applications that help manage T1D. The BioKernel
(described in the previous section) is at the heart of our design
and enables extensibility. The BioKernel is the component
that interacts with the CGM and insulin pump hardware, runs
the safe physiological dosing algorithm and produces event
logs that other applications consume for their operation.

The event logs captured by the BioKernel record events
pertaining to the CGM and the pump. CGM logs only con-
sist of a timestamp and a glucose reading, while pump logs
include the commands issued to the pump along with their
timestamp. Applications for automated insulin delivery pe-
riodically consume both CGM and pump logs to calculate
the amount of insulin to dose based on CGM readings, past
insulin doses and the amount of insulin retained by the body.
Applications for alerting consume CGM readings to predict
glucose levels going out of the glycemic range to send alerts
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Figure 7: This scale shows the extremes to which algorithms
can be provided with extensibility. The left extreme provides
no extensibility by running a fixed algorithm for insulin de-
livery. However, it is the most secure. The right extreme al-
lows for arbitrary code execution which makes it the most
extensible to support different algorithms. However, allowing
arbitary code execution makes it the least secure. Metaboli-
cOS takes a middle ground of supporting arbitrary functional
code execution that can only send commands to the pump.
Allowing arbitrary functional code provides extensibility to
algorithms while restricting it to only send commands to the
pump provides security.

to users to take corrective actions to stay in range.

One implementation decision worth noting is storing our
event logs in a cloud-based service. In our original design,
everything ran on device for both improved privacy and avail-
ability. However, i0S (the platform where we implemented
the BioKernel) is a general-purpose OS and its current abstrac-
tions mismatched what we needed in terms of background
execution. However, this design choice provides us with an
opportunity to independently verify the execution of critical
components like the safe physiological dosing algorithm.

7 Simplicity

With simplicity it is easier to reason about correctness and we
reduce the likelihood of bugs and vulnerabilities. In this sec-
tion, we first explore the simplicity of two popular automated
insulin delivery frameworks, OpenAPS and Loop. We then,
present the simplicity in MetabolicOS’s design.

The complexity behind OpenAPS’ decision making stems
from their multitude of parameters influencing basal rate cal-
culations. The OpenAPS core function for calculating in-
sulin doses consists of 1192 lines of Javascript code, 63 in-
put and configuration parameters, and 90 branch statements
that all influence the ultimate dosing decision. This logical
complications and lack of abstraction makes updating this
safety-critical code difficult and complicates the application
of formal methods.This complexity poses challenges in modi-
fication, comprehension, and garnering trust in the system’s
accuracy.Loop, on the other hand, introduces the concept of
Glucose Momentum, which lacks empirical basis.

In response to these challenges, we propose principles guid-
ing the design of the BioKernel. The BioKernel, which resides
in the center of our system, manages the CGM and insulin
pump hardware, runs the safety algorithms, and saves event

logs to the event log service to enable other apps to recre-
ate its state and extend its functionality. Our primary aim is
simplicity, achieved by minimizing the number of parame-
ters required for basal rate calculations. Equally important is
aligning these parameters with human physiology, ensuring
they reflect inherent biological processes. Overall, the most
important aspect of our system is keeping the BioKernel’s
implementation simple.

Glucose is high

Figure 8: The main user interface for the BioKernel

7.1 The BioKernel

Although our design and implementation support extensibility,
the BioKernel can serve as a stand-alone automated insulin de-
livery system. Using the main user interface for the BioKernel
shown in Figure 8, the individual can configure their thera-
peutic settings, change their pump or CGM, view summary
statistics of recent glucose readings, or deliver an insulin dose.
First, the BioKernel uses LoopKit, an open-source library, for
device drivers to interact with the underlying CGM and insulin
pump hardware. Second, the BioKernel implements glucose,
insulin, therapeutic settings, and alarm services that ingest



events from the LoopKit drivers and provide abstractions to
the rest of the BioKernel. Third, the closed-loop run time
queries the abstraction services and runs through the closed-
loop safety calculation to update insulin delivery. Fourth, the
BioKernel provides trusted Ul components that other apps
can invoke using Universal Links to update therapeutic set-
tings or to dose insulin. Fifth, the BioKernel event logger sits
in between the LoopKit drivers and BioKernel abstraction
services to log these events.

7.2 Architecture Simplicity

Our innovation is in the architecture we use to implement T1D
management features. We use separation principles from the
OS and microkernel areas, applied to the application layer for
strong isolation and simplicity of our software components,
similar to secure web browsers. We decompose the system
into isolated modules, and expose narrow and well-defined
interfaces. These interfaces help provide the anchor for our
security policies and form the foundation for our extensibility
mechanisms. Our main approach for achieving simplicity is
by logging events and offering interfaces for other applica-
tions to interact with the BioKernel. This extensibility allows
us to incorporate the expected features of an automated in-
sulin delivery system while maintaining the simplicity of the
BioKernel intact. Another key approach to simplification we
undertake is achieved by reimagining the core closed-loop al-
gorithms, leveraging advancements in ultra-fast acting insulin.
By utilizing these faster acting insulins, we can eliminate cer-
tain complexities such as core abstractions, predictions, and
simulation functions typically present in automated insulin
delivery systems. Additionally, since our software directly
impacts a biological system (humans injecting insulin) operat-
ing on longer timescales, we can defer some verification tasks
and correctness checks outside of the BioKernel, knowing we
have hours until adverse effects occur.

8 Evaluation

In this section, we evaluate the adaptability, extensibility and
simplicity of the MetabolicOS. The adaptability evaluation fo-
cuses on establishing the validity of using ML and the added
glucose abstraction for the insulin delivery. We evaluate the
algorithmic extensibility and dive deeper into the event logs
and metabolic watchdog components of MetabolicOS to un-
derstand the systems extensibility. The final simplicity section
focuses on evaluation of the complexities in the BioKernel.
Our evaluation data comprises 30 simulated patients from
the UVA-PADOVA simulator and Bob, an actual human who
uses MetabolicOS. The testing evaluation of each patient’s
model was done on a month’s worth of unseen data for that
patient. To run our real-life experiments, we use MetabolicOS
running on Bob’s iPhone 14. Bob uses a Dexcom G7 CGM
and a combination of manual insulin injections using a syringe

and Humalog insulin in addition to insulin injections from a
Omnipod Dash insulin pump with Lyumjev insulin that he
uses with MetabolicOS’s closed-loop algorithms. Bob also
wears an Apple Watch, which we use to deliver notifications
from the Metabolic Watchdog.

8.1 Isadded glucose a good abstraction for ma-
chine learning?

We aim to evaluate our added glucose abstraction by making it
the target variable for ML predictions. We use this prediction
to calculate the amount of insulin to be injected. We calculate
each patient’s Time in Range(TIR) as the determining factor
of how good a model is rather directly considering model
accuracy in added glucose predictions as we wish to evaluate
both the model and the added glucose abstraction itself, in
helping human stay in health blood glucose range. A total of
two month’s historical data(one month for training the model
and one month for testing the model’s performance) of CGM
and insulin data collected throughout the day at different time
steps was used as our starting point.

We can see that all ML models with added glucose out-
perform the reactive model significantly in helping adults,
adolescents and children with T1D stay within the time in
range shown in Figure 9 . On a comparative analysis we see
that the best performance for adults and adolescents provided
by our Neural Network(NN) architecture with custom loss
function and best performance for children provided by ran-
dom forest regressors. We attribute the better performance of
random forest over the neural network to size and nature of
data, high non linear fluctuations in glucose readings due to a
child’s metabolism and lower blood volume and its robustness
toward noise/outliers.

8.2 Does ML decrease chances of extreme hy-
poglycemia?

While we have compared our models to the reactive physio-
logical model in terms of TIR, we also emphasize the need
for the system to not let the users hit extreme lower or higher
values of blood glucose when they are not in range. Both hy-
perglycemia (high blood sugar) and hypoglycemia (low blood
sugar) can be dangerous if not managed properly, especially
if they reach level 2 severity. Extreme hyperglycemia can lead
to long term health complications like ketoacidosis, cardiovas-
cular conditions, nerve damage and other chronic conditions.
Extreme hypoglycemia on the other hand is known its imme-
diate adverse impact on a person’s life in the form of seizures,
loss of consciousness, cognitive impairment and potentially
death and hence, it is much more imperative to make sure the
patient spends negligible to no time in this particular level 2
range. In this section, we evaluate our MetabolicOS running
the custom neural network against the reactive physiological



Patient Reactive | Support Vector | Random Forest | XG Boost NN
Type TIR % TIR % TIR % TIR % TIR %
Adults 88.25% 91.16% 91.26% 91.15% 91.49%
Adolescents | 81.52% 85.44% 85.76% 87.75% 88.85%
Children 76.24% 76.43% 86.09% 83.16% 84.16%

Figure 9: The average percentage of Time in Range (TIR) spent by each group of patients using different ML models with added
glucose. We measure time spent in ranges using CGM data and the bolded values represent the best results for each range.

model on the time spent by the patients in level 2(extreme)
hypoglycemia.

Metric | NN % | Reactive %
L2 avg 85 75
L2 max 90 80

Figure 10: Comparison of average and maximum time spent
in level 2 hypoglycemia by patients using NN and Reactive
Model

Considering the criticality of managing hypoglycemia over
hyperglycemia, we explore the average amount of time spent
by the 30 patients and the maximum amount of time spent
by any patient in level 2 hypoglycemia as an evaluation how
safe the models work even when they are out of the ideal
blood glucose range. From the Figure 10, we can see that our
neural network formed with our added glucose abstraction
provide better outcomes for the patients than the reactive
physiological model.

Overall, we can see that even when the patient is not in the
recommended blood glucose range, ML protects them from
spending a significant amount of time in the dangerous level
2 segments.

8.3 Is using a distributed event log effective for
decomposing the system?

In this section, we evaluate our alerting app, called the
Metabolic Watchdog, to measure how effective it was when
running as a separate app as in Figure 1 1. Because in Metabol-
icOS we maintain simplicity through our event logging and
distributed app architecture, evaluating how well this dis-
tributed system performs in practice is important.

The main idea behind the Metabolic Watchdog is that it
is a separate app that reads CGM values and predicts hypo-
glycemia before it happens. When it predicts hypoglycemia, it
alerts the user so that they can eat sugar to avoid low glucose
from happening.

To evaluate the Metabolic Watchdog, we review four
weeks of data from Bob, from February 22nd, 2024 through
March 22nd, 2024. We measure the number of alerts that the
Metabolic Watchdog sent Bob and compare against an ideal-
ized version of the same algorithm that would have run as each
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new CGM value arrives. This idealized algorithm shows what
an alerting system built directly into the BioKernel would
have done without managing delays and network connectivity
issues from the distributed nature of MetabolicOS.

Over the period of time, the distributed Metabolic Watch-
dog sent Bob 68 alerts. In comparison, our idealized algorithm
would have sent 70 alerts, so overall the Metabolic Watchdog
sent alerts successfully 97% of the time. The two alerts that
the Metabolic Watchdog missed where both due to network
failures where the BioKernel was unable to sync its logs to
the MetabolicOS server fast enough after reading in a CGM
value that would have led to an alert. Upon reviewing the
data, these missed alerts were both algorithmic false positives
where the alert would have fired but Bob did not experience
hypoglycemia.

We consider this success rate of 97% to be adequate for the
Metabolic Watchdog. The reason we believe this is because
our system has redundancy built in, where if Bob had expe-
rienced hypoglycemia his CGM app, which is separate from
MetabolicOS, would have alerted him using non-networked
and local data. Given this built in redundancy, and the sim-
plicity gains we get from pushing non-critical functionality
outside of the BioKernel, we believe that our architecture is
appropriate.

An alternative implementation for the Metabolic Watchdog
could be to use background execution and local IPC channels
on the phone to run the alerting software. This alternative
implementation would have been consistent with our archi-
tectural separation principles, but the reason we opted for our
current implementation is that iOS does not have abstractions
for running background tasks every five minutes unless these
tasks connect to a Bluetooth device, like the BioKernel does.

8.4 Is the BioKernel complex?

To evaluate the complexity of our BioKernel, we count the
lines of code in our implementation and compare against
Loop, another open-source automated insulin delivery system.
Using the “cloc” utility the BioKernel app has 4.6k lines of
code compared to 39.8k lines of code in the Loop app, an order
of magnitude reduction. We omit the lines of code coming
from LoopKit and other drivers because these are shared
between both projects. However, LoopKit and the drivers have
a substantial amount of code, weighing in at 70.1k lines of
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Figure 11: Depiction of added glucose vs time for one of the adult T1D individuals. The right side showcases neural network
predictions trained with mean squared error loss while left side depicts our custom loss neural network model

code and is likely the next big opportunity for simplification.
All those extra lines of code in Loop are useful, which is
why we port Loop to run within MOS. Bob uses it for meal
announcements and looking at their simulation and prediction
results. However, for the core closed-loop algorithm we show
how to keep it separated in an isolated protection domain
while still providing the right interfaces to enable a fully
featured automated insulin delivery system. To explain why
we have such a large reduction in source code, we outline
the differences between the two systems. First, Loop has
several features that we move outside of the BioKernel. These
features include a remote interface for insulin dosing (which
we think it a bad idea in general), a Watch app, Siri command
interfaces, third party libraries, tutorials, meal announcements,
physiological simulations, and predictions of future metabolic
states. Second, we simplify our implementation of features
that are shared between the BioKernel and Loop.

9 Related work

Several automated insulin delivery systems exist today. With
companies such as Tandem [2], Insulet [1], and Beta Bion-
ics [6] all providing commercial closed-loop systems that con-
nect CGMs to insulin pumps for automatic insulin delivery.
From the open source world, OpenAPS [17] and Loop [13]
also provide systems that people can use. To the best of our
knowledge, none of these systems use ML. Our study builds
on top of these works, where we use many of the safety prin-
ciples from OpenAPS, the CGM and insulin pump drivers
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from Loop, and the push for user-facing simplicity from Beta
Bionics. However, our focus is on how to provide security,
safety, and extensibility for ML-based closed-loop systems
while maintaining a small trusted computing base in our im-
plementation.

For our software system architecture, we use separation
principles from the OS and microkernel areas [3, 10] applied
to the application layer for strong isolation and simplicity
of our software components, similar to secure web browsers
[8,21,24,26]. Like work on secure web browsers, we apply
OS principles at the application layer. In our implementation,
we strive for simplicity for our trusted computing base first
and foremost, while also facilitating extensibility. We want
people to run whatever closed-loop algorithms they want to
and to have a fully-featured automated insulin delivery system
— we focus on providing mechanisms for rich functionality and
flexibility securely and safely to this new application domain.

Previous research has looked at the security of implanted
medical devices in general [5,9,22], in addition to looking at
insulin pumps in particular [12, 19], with more recent work
looking at providing improved security [4, 16]. Also, recent
work has looked at applying formal methods to insulin pumps
for high assurance [18]. These works focus on the device and
their communication channel. In contrast, with MetabolicOS
we assume that these devices are correct and secure and focus
our efforts on the software we use to run the automated insulin
delivery system.



10 Conclusion

Individuals with T1D face significant challenges to keep up
their metabolism to match that of their healthier counterparts.
The complexities in T1D makes it difficult to devise a com-
mon, adaptable solution for all individuals. Computer systems
have an opportunity to safely support customizable solutions
for individuals to manage their T1D.

In this paper, we presented MetabolicOS, an adaptable,
extensible and simple system to support diverse systems and
algorithms to manage T1D. The extensibility and security
mechanisms provided by MetabolicOS allow researchers and
biohackers to safely experiment and build innovative systems
to overcome T1D. Our long-term hope with this research is to
turn a T1D diagnosis from a death sentence into an indicator
of longevity, where people living with T1D will be expected
to live longer then their healthy peers.
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