
FP-Inconsistent: Measurement and Analysis of
Fingerprint Inconsistencies in Evasive Bot Traffic
Hari Venugopalan

hvenugopalan@ucdavis.edu
UC Davis

Shaoor Munir
smunir@ucdavis.edu

UC Davis

Shuaib Ahmed
shuahmed@ucdavis.edu

UC Davis

Tangbaihe Wang
monwang@ucdavis.edu

UC Davis

Samuel T. King
kingst@ucdavis.edu

UC Davis

Zubair Shafiq
zubair@ucdavis.edu

UC Davis

ABSTRACT
Browser fingerprinting is used for bot detection. In response,
bots have started altering their fingerprints to evade detec-
tion. We conduct the first large-scale evaluation to study
whether and how altering fingerprints helps bots evade de-
tection. To systematically investigate such evasive bots, we
deploy a honey site that includes two anti-bot services (Data-
Dome and BotD) and solicit bot traffic from 20 different bot
services that purport to sell “realistic and undetectable traf-
fic.” Across half a million requests recorded on our honey
site, we find an average evasion rate of 52.93% against Data-
Dome and 44.56% evasion rate against BotD. Our analysis of
fingerprint attributes of evasive bots shows that they indeed
alter their fingerprints. Moreover, we find that the attributes
of these altered fingerprints are often inconsistent with each
other. We propose FP-Inconsistent, a data-driven approach
to detect such inconsistencies across space (two attributes
in a given browser fingerprint) and time (a single attribute
at two different points in time). Our evaluation shows that
our approach can reduce the evasion rate of evasive bots
by 44.95%-48.11% while maintaining a true negative rate of
96.84% on traffic from real users.

1 INTRODUCTION
The prevalence of bots on the web is on the rise [15]. Per
recent reports, bots constitute around 49.6% of online traf-
fic [31], with 64.5% of those being bots that engage in mali-
cious activity. Bad actors employ bots to launch a multitude
of attacks [11, 13, 14, 47, 56]. To counter such attacks, anti-
bot services aim to detect and block bot traffic. Prior research
has shown that anti-bot services use browser fingerprinting
to detect bots without disrupting the user experience of legit-
imate users [5, 63]. Browser fingerprints capture attributes of
the web browser sending web requests and anti-bot services
attempt to use differences in these attributes to distinguish
bots from real users [67].

Blackhat marketplaces [6, 52, 55], however, advertise real-
istic and undetectable bot traffic as a service. The traffic from

such services constitute impression fraud and serve to artifi-
cially boost website engagement for monetization [18, 35, 56].
To evade detection, bots from these services are likely alter-
ing their fingerprint attributes that are used by anti-bot ser-
vices for detection [26, 37]. We refer to such bots as evasive
bots. It is important to characterize evasive bots and their
fingerprints to improve the effectiveness of bot detection.

Prior research has studied bot fingerprints by employing
their own bots [3, 63] or studying naturally discovered bots
on their honey sites [40]. Thus, this line of work is not geared
towards capturing the evasive fingerprints used by bots seek-
ing to evade detection in the wild. Wu et al. performed a
large-scale characterization of the differences between hu-
man and bot fingerprints in the wild [67]. However, they
did not specifically characterize evasive bots since they treat
their bot detection system decisions as ground-truth to dis-
tinguish between the fingerprints of bots and real users.
To fill this gap, we perform the first large-scale measure-

ment of evasive bots that evade anti-bot services. To this end,
we drive traffic from different bot services from blackhat
marketplaces to different instances of our honey site. That
way, the requests recorded at each honey site instance can be
attributed to a bot service from whom we purchased traffic.
These operators advertise their traffic as being realistic and
natural, indicating that they likely employ evasive bots to
ensure that they do not get detected. We integrate two com-
mercial bot detection services (DataDome and BotD) on our
honey site for bot detection. We also instrument our honey
site to collect a range of fingerprint attributes.

We collect 507,080 requests from 20 different bot services,
with DataDome and BotD detecting 55.44% and 47.07% of
these requests respectively. We analyze fingerprint attributes
from different bot services to identify different sets of at-
tributes that are effective at evading DataDome and BotD
individually as well as attributes that are effective at evading
both anti-bot services. Our analysis reveals spatial inconsis-
tencies (among the different attributes of a given request)
and temporal inconsistencies (across requests originating
from the same device). These include obvious inconsistencies

ar
X

iv
:2

40
6.

07
64

7v
2

 [
cs

.C
R

]
 3

1
Ja

n
20

25

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

that cannot exist for real users, thereby making them useful
signatures to detect bots.
We use observations from our analysis to develop FP-

Inconsistent, a data-driven approach to discover inconsisten-
cies in fingerprint attributes for bot detection. FP-Inconsistent
relies on the insight that real devices can only have a limited
number of hardware and software configurations that are
reflected in fingerprint attributes. Evasive bots, in their at-
tempt to evade detection, emulate a large number of invalid
or extraneous configurations. FP-Inconsistent leverages this
mismatch between the expected and observed number of
configurations to identify potential inconsistencies among
evasive bot fingerprints. It does so by calculating the num-
ber of configurations for pairs of fingerprint attributes from
evasive bots and identifying inconsistencies among attribute
pairs that exhibit a higher-than-expected number of config-
urations.

Using this approach, we generate inconsistency rules that
can be readily deployed by anti-bot services. Prior research
focusing on the use of inconsistencies for bot detection
[62, 63] has predominantly relied on one-off anecdotes to
define inconsistencies that are not data-driven and hence
do not scale. FP-Inconsistent systematizes the generation of
inconsistency rules for bot detection.

Our evaluation shows the rules generated by FP-Inconsistent
are able to achieve 48.11% and 44.95% reduction in traffic
that evades DataDome and BotD respectively while main-
taining a true negative rate of 96.84% on real user traffic. Our
experiments also show that FP-Inconsistent does not incur
false positives with most privacy-enhancing technologies.
We open-source our honey site architecture and inconsis-
tency rules for public use at this link.

Our work makes the following contributions:
• A novel honey site architecture to establish reli-
able ground-truth for evasive bots.

• A large-scale measurement and analysis of fin-
gerprint attributes for evasive bots that are able to
evade anti-bot services.

• A data-driven approach to discover inconsisten-
cies in fingerprint attributes for detecting evasive
bots.

2 BACKGROUND AND RELATEDWORK
2.1 Evaluation of bot detection services
Anti-bot services on the web generally employ machine
learning to determine if an incoming request was sent by a
human or a bot[9]. These services rely on several signals cap-
tured through different browser fingerprinting APIs, request
headers, and behavior characteristics on a website[63]. Prior
research has attempted to measure the accuracy of anti-bot
services and understand their detection techniques. Azad et

al. [3] analyzed 15 different anti-bot services, 14 of which
used modern fingerprinting techniques such as WebGL and
Canvas-based fingerprinting. While these services rely on in-
consistencies in fingerprint attributes to detect bots, we show
how they can be more extensive in using them to improve
bot detection (Section 7).

Azad et al. also tried to evaluate the performance of these
services by deploying their own bots and measuring their
evasiveness. In contrast, we evaluate anti-bot services on
requests from bots in the wild.

2.2 Analysis of bot traffic in the wild
Xigao et al. [40] studied the prevalence of "malicious" bots in
the wild. They use the behavior of bots (indulging in creden-
tial stuffing, not honoring bots.txt, etc) to characterize them
as malicious. Such characterization is not applicable for bots
indulging in impression fraud since these bots don’t exhibit
any explicit behavior that can be leveraged for detection.
Further, their approach draws traffic from bots in general
and they do not include mechanisms to isolate evasive bots
visiting their honey sites that seek to evade detection.

Wu et al. [67] analyzed browser fingerprints from 36 bil-
lion requests on 14 commercial websites. Their analysis
shows that adversarial bots (bots that change their finger-
prints to avoid detection) have significantly different prop-
erties compared to benign bots. While they conducted the
largest study (at the time of writing) of bots in the wild, their
ground-truth relies on decisions by F5 Inc.[17], a commercial
anti-bot service. Thus, without a more robust mechanism
to collect ground-truth, their approach cannot analyze bots
that can evade commercial anti-bot services such as F5.

Browser Polygraph [38] employs machine learning to de-
tect bots that indulge in account takeover fraud (ATO). They
predict if the fingerprint attributes in a request are consis-
tent with the request’s reported User-Agent. In contrast,
our work proposes a data-driven and semi-automatic tech-
nique to discover inconsistencies between any pair of fin-
gerprint attributes (which includes but is not limited to the
User-Agent) to combat impression fraud. Further, similar
to the work of Wu et. al, their approach could be bolstered
with more robust ground-truth since they rely on tags from
FinOrg (a financial organization) to provide ground-truth for
evaluation. In our work, our novel honey site architecture
provides ground-truth to isolate traffic sent from different
bot services.

2.3 Challenges in bot detection
We discuss some of the common techniques used by bots to
evade detection.
Polymorphism: Certain bots morph their User-Agent or
other attributes (i.e., fingerprints) to appear as benignwebsite

https://github.com/hariv/fp_inconsistent

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

visitors for evasion [3, 38]. Iliou et. al [30] showed that while
machine learning algorithms can detect simple bots with
a precision and recall of 95% and 97% respectively, more
advanced bots, i.e. bots that change their fingerprints, result
in a drop in accuracy to only 55%.

Behavioral Mimicry: Bots also simulate human-like be-
havior to evade behavioral analysis systems, including mim-
icking mouse movements, keystrokes, browsing patterns,
and human text input[4]. Bot detection systems use these
movements as “Human Interactive Proofs (HIPs)”[22, 23]
to determine if a website visitor is a bot or a human. Jing
et. al. [36] developed a bot framework for bots to generate
keystrokes and mouse clicks that closely resemble human
actions to evade detection.

3 THREAT MODEL
In this paper, we focus on bots committing impression fraud [56].
Web publishers who seek to artificially inflate the engage-
ment on their websites indulge in this type of fraud. Inflating
engagement allows these publishers to monetize and profit
from their websites through ads, even when they cannot
guarantee visits to their website from legitimate users. Ad-
vertisers pay publishers for impressions of their ad (views,
clicks, etc) on the publisher’s website. However, only impres-
sions recorded from legitimate users are useful to advertisers.
Publishers who do not receive traffic from legitimate users
could employ bots to record these impressions to get paid
by advertisers without delivering any useful impressions to
them. We focus on bots indulging in impression fraud over
other types of fraud (such as credential stuffing, account
takeover, etc), since these bots do not have a need to perform
specific actions [3, 40] to reach their goal, thereby making it
more challenging to detect them.

In our threat model, we consider publishers who incorpo-
rate anti-bot services on their websites to provide assurance
of traffic from legitimate users, while employing evasive bots
to evade detection.

4 MEASUREMENT INFRASTRUCTURE
In this section, we describe our measurement infrastructure
including the design of our novel honey site architecture.
We design our measurement infrastructure to satisfy three
requirements that enable us to reliably characterize evasive
bots: first, we need reliable ground-truth that we only record
requests from evasive bots of interest and no other entities
(real users or other bots). Second, we need decisions from
bot detection services on each request to isolate requests
that evade detection. Third, we need to collect browser at-
tributes that constitute browser fingerprints in these requests
to analyze attributes that help with evasion.

/Byxxodkxn3 /Q6vCXSklnE /Ofauw8YynZ…

Parent domain

Bot Traffic S1 Bot Traffic S2 Bot Traffic Sn

Figure 1: To collect requests from different bot ser-
vices, we create multiple versions of the same honey
site under the same domain. The only difference be-
tween these versions is the presence of different ran-
dom strings in their URL. We then drive traffic from
different bot services to different versions of the honey
site.

4.1 Honey site architecture
Using obscure domain names for honey sites [40] cannot
guarantee that the honey sites only receive requests from
evasive bots. Bots that automatically send requests to such
domains are typically indexing bots that visit new websites
added to domain registries and other sources of DNS records.
Examples of such bots include search engine bots that do
not have a need to conceal their identities. In fact, Google’s
bots announce their identity through their User-Agent [24].
While evasive bots may also send requests to such domains,
the absence of a mechanism to isolate those requests makes
it challenging to analyze them. Evasive bots indulging in
impression fraud do not have a need to perform specific
actions to record views or impressions. Hence, such bots
cannot be detected based on their actions/behavior [3, 40].

To overcome the challenge of only recording requests from
evasive bots, we deploy multiple versions of the same honey
site under the same domain. These versions only differ in
terms of the presence of arbitrarily chosen strings in their
URL. We do not record requests that do not contain one of
these strings in the URL to ensure that we do not record
requests from real users or generic bots that discover our do-
main. We also share URLs having different arbitrary strings
with different bot services. Thus, these URL strings enable
the isolation of requests received from different bot services.
As a concrete example, if example.com is the domain of our
honey site, example.com/XXXXX, example.com/YYYYY, and
example.com/ZZZZZ would constitute different versions of

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

the honey site. We then purchase traffic from 3 different bot
services to each send requests to one of these URLs. Real
users and other generic bots who may stumble upon our
site, will not know these strings and hence cannot include
such strings in their requests. Thus, we can ensure that we
only record requests from the bot services where we made
our purchases using these URL strings. Figure 1 shows an
overview of the honey site architecture.

4.2 Anti-bot services
We integrated two popular commercial anti-bot services on
our honey site: DataDome [12] and BotD [20]. Both Data-
Dome and BotD provide real-time decisions on requests re-
ceived on awebsite. DataDome advertises real-time decisions
for a request in under 2 milliseconds with an overall accuracy
of 99% and a false positive rate of 0.01%. Prior research on bot
detection has explored DataDome [3, 69]. BotD is a bot detec-
tion service from the developers of the popular open-source
fingerprinting library FingerprintJS [19] that is widely used
in industry and academia [3, 38, 40, 63]. BotD claims to use
“the most advanced device fingerprinting technology”, and
reports a detection accuracy of 99.5%.

We integrate JavaScript libraries of both these services on
our honey site1. These libraries collect browser fingerprints
of the browser visiting the honey site and relay them to their
own servers. The servers then respond with the decision of
whether a real human or a bot originated the request.

These services are black-boxed and do not provide in-
formation on fingerprint attributes they use as features to
decide if a request originates from a bot. To determine this
information, we crawl our honey site using OpenWPM [48].
OpenWPM is an open-source tool to track the behavior of
different web elements, including scripts, on a webpage.
Table 5 in Appendix B highlights the different browser

APIs accessed by DataDome and BotD. Both services access a
number of fingerprinting APIs such as navigator.plugins,
HTMLCanvasElement.getContext, navigator.userAgent,
and more. We find that DataDome collects more attributes
from each request than BotD. In Section 5, we see that Data-
Dome has higher bot detection accuracy than BotD, which
could potentially stem from these additional attributes.

4.3 Bot services
Wemade purchases frommultiple online bot services to send
traffic to different versions of our honey site. We make our
purchases from the SEOClerks [52], an underground market-
place for web traffic where bot services advertise their traffic
as being real, organic, and Adsense safe to boost website en-
gagement. Their claims of being able to send real and organic

1As required by DataDome, for each request, we also make an API call from
our server to get their decision

Figure 2: Screenshot from a bot service on SEOClerks
making claims about sending organic traffic to drive
engagement onwebsites. The claims likely suggest that
the bot service employs evasive bots to took real users.

from bot service FingerprintJS

Req
ue

st
is

se
nt

to
Data

Dom
e

an
d B

otD
 fo

r a
na

lys
is

database alongside other
request data

Decisions from DataDome and

BotD are stored in database

Attributes stored inAttributes collected byNetwork request sent

Figure 3: Overview of our data collection pipeline.

traffic indicate that they are likely using evasive bots that
alter their fingerprints to look like real users. Figure 2 cap-
tures a screenshot from a bot service on SEOClerks making
such claims about their traffic. We share URLs with different
version strings with different bot services to identify the bot
services of each request on our honey site.

4.4 Data Collection
To characterize the differences in the fingerprint attributes of
evasive bots, we extract information from different browser
APIs and properties upon loading our honey site in the
browser. We send this information to our server in an http re-
quest. We use FingerprintJS [19], a widely deployed browser
fingerprinting library to capture this information. Finger-
printJS captures over 30 different fingerprint attributes in-
cluding the list of fonts installed on the browser, the number
of CPU cores on the device running the browser, the amount
of memory on the device, and the languages supported by
the browser. While we focus on the attributes captured by
FingerprintJS in this paper, both our measurement analysis
(Section 5) and our methodology to discover inconsistencies

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

(Section 7) are compatible with other fingerprint attributes
too.

5 ANALYSIS

Table 1: Overview of different bot services sending traf-
fic to our honey site and their evasion rates against
DataDome and BotD.

Bot Num. DataDome BotD
Service Requests Evasion Rate Evasion Rate

S1 121500 44.01% 71.58%
S2 63708 42.99% 72.29%
S3 54746 74.91% 10.26%
S4 47278 38.65% 73.85%
S5 40087 23.86% 72.65%
S6 32447 71.81% 5.45%
S7 28940 2.56% 39.99%
S8 26335 80.43% 28.9%
S9 23412 78.29% 19.33%
S10 18967 15.77% 59.23%
S11 17996 6.55% 59.36%
S12 7010 5.05% 51.44%
S13 5119 6.95% 50.52%
S14 4920 83.74% 90.08%
S15 4219 11.14% 100%
S16 4174 4.48% 0.02%
S17 2999 74.66% 7.9%
S18 1430 20.7% 100%
S19 1411 9.92% 100%
S20 382 97.12% 97.12%

Over a period of 3 months, from September 2023 to No-
vember 2023, we received 507,080 requests from 20 different
bot services. We first report the detection rate of the anti-bot
services and then compare fingerprint attributes of bots that
evade detection against those that were detected. This anal-
ysis helps understand the attributes used by bots for evasion
and ways to overcome them.
Table 1 shows the statistics of the traffic obtained from

each bot service along with the evasion rate against the two
anti-bot services on our honey site (DataDome and BotD).
Among the 507,080 requests we received, 55.44% of requests
were detected by DataDome, and 47.07% of requests were
detected by BotD. These results show that a significant pro-
portion of bots are able to evade anti-bot services.

Takeaway 1: Our measurement shows that evasive bots
are not reliably detected by commercial anti-bot services.

5.1 IP addresses for evasion
We observed requests on our honey site that contained IP ad-
dresses with Autonomous System Numbers (ASNs) mapping
to cloud services such as Amazon Web Services (AWS). Since

such ASNs are likely flagged as those used by bots [10, 28],
we check the ASNs of the requests we received against public
ASN block lists [8, 27]. We report that 82.54% of requests
originated from flagged ASNs. Among these, 52.93% of re-
quests evade BotD and 43.17% of requests evade BotD. These
results show that evasive bots are able to evade detection
even when they send requests from flagged ASNs.
We suspect that anti-bot services may not rely on ASN

block lists since real users and bots can share the same ASNs
but can send requests from different IP addresses. Accord-
ingly, we ran similar analysis with blocked IP addresses us-
ing MaxMind’s minFraud API [43]. Consistent with findings
in prior research [40], we find that IP block lists offer lim-
ited coverage (15.86%). More interestingly, among the IP
addresses that were covered, requests from 48.1% were able
to evade DataDome and 68.85% were able to evade BotD.
In conclusion, we see that a significant number of bots

that sent requests from blocked IP addresses and ASNs were
able to evade both DataDome and BotD. This indicates that
evasive bots don’t merely send requests from IP addresses
not captured by block lists to evade detection.

Takeaway 2: Evasive bots do not merely rely on sending
requests from IP addresses that are not captured by block
lists to evade detection.

5.2 Fingerprint attributes for evasion
Since evasive bots don’t merely rely on IP addresses, we sys-
tematically analyze the browser fingerprint attributes in their
requests to identify those used for evasion. Concretely, we
train models to distinguish between the requests that were
detected by and evaded DataDome and BotD respectively.
We then use techniques from the explainability of machine
learning to identify fingerprint attribute values that help
with evasion. We then explore the values of these attributes
on requests from bot services that were most successful with
evasion to verify that they enable evasion.

5.2.1 Identifying fingerprint attributes. We train two random
forest classifiers using XGBoost [68] to distinguish between
the requests that were detected and evaded DataDome and
BotD respectively. Each classifier takes as input fingerprint
attributes from each request (discussed in Section 4.4) and
provides a binary decision on whether that request would
detected by the respective anti-bot service.
We performed a 90-10 split on the requests to train the

classifiers. The classifier for BotD attained an accuracy 97.8%
on the training set and 97.71% on the test set while the clas-
sifier for DataDome attained an accuracy of 82.09% on the
training set and 81.66% on the test set. These high accuracy
values indicate that the fingerprint attributes of requests that

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

evade the two anti-bot services are considerably different
from those of requests detected by them.

Table 2: Top 5 most important fingerprint attributes
that help evade DataDome and BotD.

DataDome BotD

Vendor Flavors Vendor Flavors
Plugins Plugins

Screen Frame Touch Support
Hardware Concurrency Vendor

Forced Colors Contrast

We use SHapley Additive exPlanations or SHAP [53] to
analyze these classifiers to identify fingerprint attributes that
result in evasion. Table Table 2 lists the top 5 attributes that
help evade DataDome and BotD respectively.

5.3 Fingerprint attributes among evasive
bots

We now inspect the attribute values of requests from bot
services with high evasion rates to see if they exploit the
attributes identified in Table 2 for evasion. Concretely, we
compare attribute values across bot services that have high
evasion rates against those that have low evasion rates.

W
eb

Kit

bu
ilt-

in
PDF PDF

View
er

Edg
e

PDF Plug
in

Chro
mium

PDF View
er

Chro
me

PDF View
er

Plugins

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

tie
s

Evasion
Detection

Figure 4: Bar plot showing the probability of PDF plug-
ins that have the highest probability of evasion against
BotD. This plot shows that the presence of any plugin
helps evade BotD.

5.3.1 Bots evading BotD. We inspected requests from the
top 3 bot services with the highest evasion rates against
BotD (S15, S18, and S19 in Table 1) and the top 3 bot services
with the lowest evasion rates against BotD (S6, S16, and S17
in 1). We record 7,132 requests from the top 3 bot services
evading BotD and report 100% evasion among them. We
record 39,620 requests from the top 3 bot services that are
detected by BotD and report an evasion rate of 5.11% among
them.
We did not observe significant differences between the

values of Vendor Flavors, Vendor, and Touch Support at-
tributes among requests from these bot services. 99.91% of
requests from services evading BotD supported the Chrome
PDF Viewer plugin, while 100% of requests detected by BotD
did not support any plugins. Motivated by these stark dif-
ferences, we further investigate the impact of plugins on
evading BotD. Concretely, from all requests received on our
honey site, we compute the probability of evading BotD
when supporting any one of 5 commonly used PDF plugins.
Figure 4 shows that the presence of any PDF plugin nearly
guarantees evasion against BotD.

5.3.2 Bots evading DataDome. We similarly inspect requests
from the top 3 bot services with the highest and lowest eva-
sion rates against DataDome.We record 52,746 requests from
the top 3 bot services evading DataDome (S8, S9, and S17
in Table 1) having 79.15% evasion among them. We record
51,110 requests from the top 3 bot services detected by Data-
Dome (S7, S11, and S16 in Table 1) with an evasion rate of
4.12%.

100% of requests from the top 3 bot services having the
highest evasion rate against DataDome did not support any
plugins. However, 56.45% of requests from the 3 bot services
with the lowest evasion rate against DataDome did not sup-
port any plugins either. Analyzing the Screen Frame and
Forced Colors attributes revealed certain values that al-
ways result in detection. However, we did not observe values
for these attributes that help with evasion.
Figure 5 compares cumulative probability distribution

functions (CDFs) of the number of CPU cores (captured
by hardwareConcurrency) on requests from bot services
with high evasion rates over DataDome against the val-
ues on requests from bot services with low evasion rates
over DataDome. These results indicate that low values for
hardwareConcurrency help evade DataDome. Concretely,
84.7% of requests from bot services with a high evasion
rate against DataDome had fewer than 8 cores. In contrast,
only 38.16% of requests from bot services detected by Data-
Dome had fewer than 8 cores. To further assess the impact of
hardwareConcurrency, we disregard requests that contain
values for Screen Frame and Forced Colors that always
lead to evasion. Now, 84.7% of requests from bot services

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

0 5 10 15 20
Number of CPU Cores

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Low evasion rate
High evasion rate

Figure 5: Cumulative probability distribution function
(CDF) plots of the number of CPU cores recorded on
requests from bot services that had the highest evasion
rate over DataDome against those that had the the
lowest evasion rate over DataDome.

with a high evasion rate against DataDome have fewer than
8 cores while only 19.05% of requests from bot services with a
low evasion rate against DataDome have fewer than 8 cores.

Evasive bots evading DataDome ensure certain values for
combinations of attributes. This is different from evasive
bots evading BotD that ensured certain values for one set
of attributes (plugins). We investigate more combinations of
attributes that help evade DataDome in Appendix C.

5.3.3 Bots evading DataDome and BotD. Requests from two
different bot services have over 80% evasion rate against
both DataDome and BotD (S14 and S20 in Table 1). We re-
ceived 5,302 requests from these services which have an
84.7% evasion rate against DataDome and 90.59% evasion
against BotD.

We observe that 83.77% of these requests have fewer than
8 CPU cores indicating that they exploit hardware concur-
rency to evade DataDome. Interestingly, 93.02% of these
requests do not have any plugins, indicating that they do not
exploit plugins to evade BotD. They exploit touchSupport,
a different blind spot of BotD for evasion. Concretely, 78.36%
of requests from the bot services evading both DataDome
and BotD support touch events, while only 3.95% of requests
from the top 3 bot services having the lowest evasion rate
against BotD support touch events. In contrast, only 0.07% of
requests from the top 3 bot services that only evaded BotD
(Section 5.3.1) showed support for touch events and 8.61% of

requests from the top 3 bot services that only evaded Data-
Dome (Section 5.3.2) showed support for touch events.

Takeaway 3: Evasive bots exploit either touchSupport
and plugins to evade BotD. They exploit
hardwareConcurrency to evade DataDome.

6 INCONSISTENCY ANALYSIS
From our analysis in the previous section, we see ensuring
certain values for certain fingerprint attributes helps bots
evade detection. One way in which evasive bots could ac-
complish this would be to send requests from devices that
would contain the desired values for attributes. For example,
evasive bots could send requests from devices containing 4
CPU cores to ensure a value of 4 for hardwareConcurrency.
Alternatively, evasive bots could alter browser APIs and de-
vice properties to present their desired values for fingerprint
attributes [41]. In this case, an evasive bot could alter the
hardwareConcurrency attribute of the navigator object to
return 4 on a device that may not have 4 CPU cores.

In this section, we describe various inconsistencies in fin-
gerprint attributes among the requests received on our honey
site. These inconsistencies provide evidence of bots altering
browser APIs since such inconsistencies are extremely un-
likely to occur when using real devices. We use insights
from these inconsistencies to develop FP-Inconsistent, our
semi-automated technique to generate inconsistency rules
to detect evasive bots (Section 7).

iPho
ne

Othe
r

iPad M
ac

Device Type

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

tie
s

Evasion
Detection

Figure 6: Bar plot showing the top 4 device types (in-
ferred from the User-Agent) that have the highest prob-
ability of evading DataDome.

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

6.1 Inconsistencies across fingerprint
attributes

Figure 6 shows the top 4 device types (inferred using the
User-Agent property of the browser’s navigator object)
that have the highest probability of evadingDataDome among
the requests recorded on our honey site. From the figure, we
see that iPhones have the highest probability of evasion
(around 50%). We now look at other fingerprint attributes to
determine if evasive bots sent requests from real iPhones or
if they altered the navigator object on their browser to have
their devices appear as iPhones. Since iPhones have a fixed
set of screen resolutions (12 resolutions [16]), we inspect
the spread of screen resolutions captured on requests from
iPhones. Upon inspection, we found 83 unique screen reso-
lutions from iPhones, out of which 42 were present among
those requests from iPhones that evaded DataDome. We also
find that 9 out of the top 10 screen resolutions that have the
highest probability of evading DataDome among requests
claiming to use iPhones do not exist in the real world. We
visualize these probabilities in Figure 7. This provides strong
evidence that bots alter browser APIs to show that they use
iPhones rather than using actual iPhones.
From this evidence, we see that while bots alter browser

APIs, it is difficult for them to ensure that all fingerprint
attributes remain consistent with their alterations. Thus,
inconsistencies across fingerprint attributes can be lever-
aged for bot detection since real users are unlikely to have
such inconsistencies. In Section 7 we discuss our systematic,
data-driven, semi-automatic approach to discover such in-
consistencies to improve bot detection.

Takeaway 4: While bots alter fingerprint attributes for
evasion, they do not ensure that all attributes are consis-
tent with their alteration. A particular value for a given
attribute mapping to a large number of values for another
attribute provides an avenue to discover inconsistencies.

6.2 Inconsistencies across fingerprint
attributes and IP addresses

Some bot services advertised sending traffic from specific
geographic regions (USA, Mexico, France, etc). Having this
ability to send requests from specific regions suggests that
the bot services are likely altering attributes that capture
the geographical location of their devices. This alteration
introduces potential inconsistencies if the bot services did
not ensure that all attributes point to the same region.
We analyzed requests from 4 different bot services who

claimed to send requests from the United States, Canada,
Europe, and France respectively. We first used MaxMind’s
GeoLite2 database [42] to extract the geolocation from the
IP address of the requests from these services. We took a

conservative approach when determining if the inferred ge-
olocation matched the region advertised by the bot service.
Concretely, we considered locations at the same UTC offset
to be a match. For example, when analyzing requests from
the bot service who advertised sending requests from France,
we considered all requests whose geolocations mapped to
any valid UTC offset that could overlap with France (such as

87
3X

39
3

64
0X

36
0

40
96

X14
40

38
40

X10
80

27
78

X12
84

19
00

X10
80

69
3X

32
0

78
0X

36
0

84
7X

47
6

56
8X

32
0

Screen Resolutions

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

tie
s

Evasion
Detection

Figure 7: Bar plot showing the top 10 screen resolutions
among requests received from iPhones (inferred using
the User-Agent) that have the highest probability of
evasion against DataDome. 9 out of these 10 resolutions
do not exist in the real world indicating an inconsis-
tency that can be leveraged to detect bots.

2

4

6

8

10

12

Lo
g

of
 c

ou
nt

(a) Timezone (b) IP Geolocation

Figure 8: Plots showing a heatmap of the geographi-
cal location of requests inferred using the timezone
attribute of the navigator object and the IP address. Dif-
ferent regions lighting up in the two heatmaps indicate
that while bots alter the navigator object or IP address
or both to change their geographical location, they do
not ensure that the location inferred using both is con-
sistent.

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

Europe/Berlin) to also originate from France. With this ap-
proach, over 90% of requests from each of the 4 bot services
matched the advertised geographical location.

However, we observed significant differences when repeat-
ing the same analysis using the browser’s timezone API [44]
to infer location. We still used the same conservative ap-
proach and merely replaced the geolocation inferred from
the IP address with the timezone. Only 76.52% of requests
mapped to UTC offsets in Canada among the requests from
the bot service that advertised traffic from Canada. More
alarmingly, we observed that only 56% of requests mapped
to UTC offsets in Europe among the requests from the bot
service that advertised traffic from Europe. In contrast, we
observed 92.44% of requests to originate from Canada and
99.83% of requests to originate from Europe from the corre-
sponding bot services when inferring the geolocation from
the IP address. Motivated by these results, we visualize the
geographical spread of requests based on both approaches in
Figure 8. The figure reveals a number of inconsistencies in
geographical locations which also constitute inconsistencies
for bot detection.

Takeaway 5: Bots alter their IP addresses, fingerprint
attributes or both to fulfill promises of sending requests
from specific locations.

Co
un

t

Nov 15Nov 01Oct 15
Date

Oct 01Sep 15

Num. Requests
Num. unique IP addresses
Num. unique cookies
Num. unique fingerprints

Sep 01

0

2000

4000

6000

8000

10000

12000

14000

Figure 9: Temporal distribution of traffic on our honey
site.

6.3 Inconsistencies across time
Figure 9 shows the temporal spread of requests received on
our honey site over time. The plot shows the number of
requests, the number of unique IP addresses, the number
of unique values for Cookies set by our honey site, and the
number of unique FingerprintJS fingerprints seen per day.

W
in

32

M
ac

In
te

l

iP
ho

ne

Lin
ux

ar
m

v7
l

Lin
ux

ar
m

v8
l

Lin
ux

ar
m

v5
te

jl
iP

ad

Lin
ux

x8
6

64

P
er

ce
nt

ag
e

of
re

qu
es

ts
fr

om
th

e
sa

m
e

C
oo

ki
e(

%
)

0

5

10

15

20

25

30

35

40

Win32 MacIntel iPhone Linux
armv7l

 Linux
armv8l

 Linux
armv5tejl

iPad Linux
x86_64

Figure 10: Percentage of requests seen across different
values of the platform attribute of the navigator object
for the same Cookie (same device). The diverse spread
of values provides strong evidence of bots altering the
platform attribute since it cannot change otherwise for
the same device.

From the figure, we see that even after 2 months, we re-
ceive requests with previously unseen fingerprints and IP
addresses. More interestingly, the spikes in the plot corre-
spond to the days when we renewed our purchases. These
spikes indicate that the bot services could have access to a
large number of devices with different device configurations
that result in different browser attributes, and thus, different
fingerprints. However, we suspect that they have a fixed
set of devices but alter fingerprint attributes to create the
illusion of sending requests from a large number of devices.
To provide evidence that bots alter their fingerprint at-

tributes, we inspect the navigator object’s platform at-
tribute on all requests that share the most commonly seen
Cookie. Whenever a device sends a request to our honey site,
we store a large random number in a first-party Cookie if
it had not been set previously. Thus, requests bearing the
same value for this Cookie should originate from the same
device. Since the platform property of the navigator object
captures information about the type of processor on a given
device, it can never change for that device unless the entity
controlling the device has intentionally altered the attribute.
In Figure 10, we see a wide distribution for the navigator’s
platform property for the device identified as sending us the
largest number of requests with the same Cookie. Differing
values for fingerprint attributes that cannot change for a
given device constitutes a temporal inconsistency that can
be used for bot detection.

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

Takeaway 6: Bots alter fingerprint attributes to create an
illusion of sending requests from a large number of de-
vices. Recording differing values for fingerprint attributes
that cannot change for a given device also constitute in-
consistencies to detect bots.

7 FP-INCONSISTENT
Our measurements in Section 6 reveal that there exist in-
consistencies in different fingerprint attributes for a given
request as well as multiple requests from the same device
at different points in time. In this section, we present our
approach to use these inconsistencies to enhance bot detec-
tion. We categorize inconsistencies into two types: spatial
and temporal.

Spatial inconsistencies refer to attribute values within a
request that conflict or are incompatible with other attribute
values in that same request. Examples include differing loca-
tions inferred from an IP address and time zone, or implau-
sible combinations, such as an iPhone without touch input
support. Our takeaways in Section 6.1 and Section 6.2 show
that evasive bots incur significant spatial inconsistencies
across information captured in their fingerprint attributes
as well as IP addresses.
Temporal inconsistencies are attribute values that are

incompatible across different requests from the same user or
users. Examples include significantly different time zones for
requests from the same IP address and inconsistent device
memory values for the same Cookie value. Our takeaway
from Section 6.3 shows that evasive bots give rise to signifi-
cant temporal inconsistencies by changing their attributes.

7.1 Identifying spatial inconsistencies
Our methodology for detecting spatial inconsistencies relies
on the understanding that real devices can only possess a
limited number of hardware and software configurations. In
contrast, bots, in their attempts to mimic real devices and
evade detection, as described in Section 6.3, often modify
these configurations. However, these alterations typically
do not account for every possible source of device informa-
tion (such as JavaScript APIs, User-Agent, etc.), leading to
a proliferation of device configurations. This is especially
noticeable in devices such as iPhones or iPads that are com-
monly owned by real users and have the highest success rate
in evading detection (as shown in Section 6.1). Consequently,
the increased number of bots pretending to be popular de-
vices results in a greater variety of configurations in the
dataset of requests obtained on our honey site.
However, identifying such inconsistencies is challenging

because analyzing all possible attribute combinations is infea-
sible. To facilitate the analysis, we first categorize attributes

into different groups based on the type of information each
attribute provides. For instance, attributes like Color Depth,
Screen Resolution, and Touch Support are grouped be-
cause they all convey information about the device’s screen.
Table 7 in Appendix F shows the various groups used in
our analysis, demonstrating how we categorize attributes to
streamline the detection of inconsistencies.

Max
Touch
Points:

2

Max
Touch
Points:

5 Max
Touch
Points:

0

Max
Touch
Points:

3

Max
Touch
Points:

1iPhone

Max
Touch
Points:

3

Max
Touch
Points:

10

Max
Touch
Points:

9

Figure 11: An example of excessive configurations of
a device (iPhone) with the fingerprint attribute repre-
senting maximum touch points.

Next, we analyze pairs of attributes within each category
to identify spatial inconsistencies. For each pair, we rank the
attributes based on the number of unique instances recorded
in our dataset. For example, in the pair UA Device and
Maximum Touch Points, we sort UA Device in descending
order by the number of unique Max Touch Points values
associated with it. A genuine iPhone can only have five simul-
taneous touch points. However, when bots imitate iPhones
but report a different number of touch points, our dataset
reveals an implausible number of unique combinations be-
tween UA Device and Max Touch Points. We start with the
UA Device instance that has the highest number of unique
combinations and identify cases where the combination of
these two attributes is impossible. After identifying the in-
consistent pair of attribute values, we repeat the process
with lower-ranked unique combinations and other attribute
pairs. Appendix D defines our algorithm to identify spatial
inconsistencies. This algorithm helps us identify the most
frequently altered attributes and the spatial inconsistencies
they produce. Table 6 in Appendix E provides examples of
such inconsistencies in our dataset.

7.2 Identifying temporal inconsistencies
Building upon our findings in Section 6.3, we utilize both
the large random number identifier set by our honey sites

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

in each visiting device’s browser storage (Cookie) and IP
address to identify temporal inconsistencies. First, we use
the Cookie identifier to measure variance in immutable de-
vice attributes (e.g., number of CPU cores, device memory)
across requests containing the same identifier. If an incom-
ing request increases the number of unique attribute values
associated with previous identifiers, we consider that request
to be temporally inconsistent. For instance, if all previous
requests from a device have a Hardware Concurrency value
of 4 and a new request contains a value of 6, we label that
request as temporally inconsistent.

We also use a user’s IP address to identify temporal incon-
sistencies related to time zones and location. If an incoming
request increases the number of unique time zones (measured
as an offset from UTC) associated with that IP, we classify
that request as temporally inconsistent. Similarly, we also
identify temporal inconsistencies in location information pro-
vided through the IP address and navigator.geolocation.

7.3 Improved bot detection
In this section, we describe our methodology to use temporal
and spatial inconsistencies to detect bots that evade Data-
Dome and BotD. To measure the improvement in accuracy
from spatial inconsistencies, we translate the inconsistencies
identified in Table 6 into filter rules. These filter rules are
then matched with each request that evaded detection by
DataDome or BotD. For temporal inconsistencies, we use
the timestamp of each request to determine the order in
which requests were made, applying filter rules to identify
inconsistencies created by requests arriving later.
The results in Table 4 show that using rules generated

through spatial and temporal inconsistency analysis can de-
crease the evasion of bots against BotD by 44.95% and against
DataDome by 48.11%. Table 3 shows the improvement in
detection on requests obtained from each individual bot ser-
vice. We evaluated the generalizability of our methodology
by computing filter rules on 80% of the requests obtained on
our honey site and evaluating them on the remaining 20%.
This evaluation led to a meagre drop in detection accuracy
of 0.42% for BotD and 0.23% for DataDome, thereby showing
that FP-Inconsistent generalizes to unseen requests.
Our results on the requests received on our honey site

show that using a filter list to counter commonly found
inconsistencies is an effective method to detect and block
evasive bots. Filter lists are commonplace in the anti-tracking
community, where they provide a good trade-off between
performance and accuracy in detecting advertising and track-
ing services. Currently, no such alternative exists to detect
bots that show inconsistent fingerprints. Our methodology
is a first step towards creating such filter lists to enhance
online bot detection.

7.4 Real user traffic
We also evaluate FP-Inconsistent’s filter rules against traffic
from real users to ensure that our improvements in bot detec-
tion do not incorrectly detect real users as bots. Concretely,
we shared a version of our honey site that contained a unique
URL with students at our university. Since we only shared
this URL with bonafide students, we have high confidence
that requests from real users were recorded at this URL. We
did not collect any Personally Identifiable Information (PII)
from these users and discuss the ethics of collecting this data
in Appendix A.
We report a true negative rate of 96.84% on the 2,206

requests received at this URL. The small number of false
positives were likely due to students experimenting with
User-Agent spoofers, as these cases triggered spatial incon-
sistencies involvingUser-Agents.We could not conduct large-
scale evaluation on real user traffic in the wild since it would
be challenging to ensure ground-truth. Regardless, our eval-
uation shows low false positive rates, which can be further
mitigated using CAPTCHAs if needed (Section 8.1).

7.5 Privacy-enhancing browsers
Privacy-enhancing browsers such as Brave [7], Tor [60], and
Fingerprint Spoofer [21] alter fingerprint attributes to protect
user privacy against tracking [29, 33]. In this section, we
examine the attributes altered by such technologies and their
impact on FP-Inconsistent.
We conducted an experiment where we sent requests to

different versions of our honey site (each with a distinct URL)
while employing five different privacy-enhancing browsers:
Safari, Brave, Tor browsers as well as uBlock Origin and
AdBlockPlus browser extensions on Google Chrome. We
300 requests from devices running macOS (M1 MacBook
Pro), Linux (Intel Coffee Lake Desktop), iOS (iPad Pro), and
Android (Google Pixel 7).

Brave Brave browser currently alters 6 different finger-
print attributes: audio, canvas, plugins, deviceMemory,
hardwareConcurrency, and screenResolution. Our incon-
sistency rules do not incorporate the former three attributes
and Brave’s alterations to the others were consistent with
other attributes. For instance, Brave alters deviceMemory on
desktops to plausible values (0.5, 1, 2, 4, and 8), which align
with the amount of memory in typical desktops and remain
consistent with other fingerprint attributes.
However, since Brave browser retains Cookies across re-

quests, the requests triggered several temporal inconsisten-
cies where multiple requests shared the same Cookie but
had differing values for both hardwareConcurrency and
deviceMemory. Such inconsistencies are rare in real-world
scenarios, as they require users to enable Brave’s fingerprint
protection while retaining Cookies. These rare false positives

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

Table 3: Improvement in DataDome and BotD’s detection rate on traffic from each bot service when incorporating
FP-Inconsistent.

Bot Num. DataDome DataDome + FP-Inconsistent BotD BotD + FP-Inconsistent
Service Requests Detection Rate Detection Rate Detection Rate Detection Rate

S1 121500 55.99% 83.41% 28.42% 60.26%
S2 63708 57.01% 82.61% 27.71% 55.83%
S3 54746 25.09% 46.31% 89.74% 94.17%
S4 47278 61.35% 82.35% 26.15% 52.09%
S5 40087 76.14% 88.19% 27.35% 50.46%
S6 32447 28.19% 43.7% 94.55% 97.05%
S7 28940 97.44% 99.35% 360.01% 83.91%
S8 26335 19.57% 47.84% 71.1% 86.06%
S9 23412 27.71% 65.69% 80.67% 94.07%
S10 18967 84.23% 94.7% 40.64% 70.43%
S11 17996 93.45% 98.63% 59.36% 80.16%
S12 7010 94.95% 98.36% 48.56% 78.21%
S13 5119 93.04% 99.1% 49.48% 87.04%
S14 4920 16.26% 66.27% 9.92% 67.29%
S15 4219 88.86% 99.6% 0% 77.87%
S16 4174 95.52% 99.69% 99.98% 100%
S17 2999 25.34% 43.88% 92.1% 95.1%
S18 1430 79.3% 99.86% 0% 83.57%
S19 1411 90.08% 99.5% 0% 59.76%
S20 382 2.88% 7.59% 2.88% 7.07%

Table 4: Comparison of the improvement in DataDome
and BotD’s detection accuracies resulting from differ-
ent forms of inconsistency analysis.

DataDome BotD

None 55.44% 47.07%
Spatial 76.04% 70.33%
Temporal 56.53% 48.09%
Combined 76.88% 70.86%

can be mitigated using CAPTCHAs, with the verification re-
sult stored in Cookies (Section 8.1).
Although FP-Inconsistent does not detect requests from

Brave browser as bots, we argue that bot services cannot ex-
ploit Brave for evasion since they seek to alter attributes that
are not supported by Brave. Concretely, we see that Brave
only alters 2 attributes that are most commonly altered by
evasive bots (Section 5.2) and does not alter other attributes
that are of interest to bots such as those pertaining to their
device type or geolocation (Section 6). If Brave were to alter
more fingerprint attributes in the future, FP-Inconsistent
could become prone to more false positives. However, even
in such a hypothetical scenario, these false positives can be
mitigated using CAPTCHAs (Section 8.1. Moreover, only

a small set of users would encounter these CAPTCHAs if
Brave’s market share continues to remain at 1% [58].

Tor FP-Inconsistent detected all requests fromTor browser
as bots since they triggered spatial inconsistencies between
the geolocation inferred from their IP address and the timezone
attribute of their navigator object. While Tor results in false
positives, we expect a small set of users to be affected since
Tor likely has less than 1% market share [57]. Furthermore,
most websites currently block requests from Tor [59], due to
the difficulty in distinguishing Tor traffic from bots. To miti-
gate false positives, we can present users with CAPTCHAs
rather than blocking their requests (Section 8.1). We report
the detection accuracy of DataDome and BotD on Brave and
Tor traffic in Appendix G.

Safari, uBlock Origin, and AdBlockPlus None of these
requests were detected as bots. This is because these tools
protect privacy by blocking tracking requests rather than
altering fingerprint attributes. The two extensions cater to
over 80 million users combined on the most widely used
browser, Google Chrome [57, 65, 66]. Safari has the second
largest market share among web browsers [57]. This shows
that FP-Inconsistent can detect bots while having zero impact
of all these users.

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

8 DISCUSSION
8.1 Overcoming false positives
Our evaluation on requests from real users show that FP-
Inconsistent incurs low, but non-zero false positive rates
(Section 7.4). Our experiments with privacy-enhancing tech-
nologies also reveal certain scenarios that could lead to false
positives (Section 7.5). In the context of this paper, false pos-
itives refer to requests from real users that were incorrectly
detected as bots. Challenging users to solve CAPTCHAs
rather than blocking them offers a promising solution to
mitigate false positives [3, 14]. While effective, CAPTCHAs
could potentially frustrate certain users [46, 51]. This frus-
tration can be mitigated by storing the result of a CAPTCHA
verification in a Cookie, thereby reducing the frequency at
which users are asked to solve CAPTCHAs.

8.2 Improving FP-Inconsistent
Inconsistencies provide a promising avenue for detection as
long as there exist at least one pair of attributes that cannot
exist in the real world. Accordingly, increasing the number
of captured attributes introduces more opportunities for in-
consistencies which can be leveraged for detection. In this
paper, we confined FP-Inconsistent to only look for inconsis-
tencies among HTTP headers and the attributes captured by
FingerprintJS. Incorporating other attributes such as those
from CreepJS [1] can further improve FP-Inconsistent.

Researchers have proposed side-channels based on physi-
cal device characteristics to uniquely identify devices even
among those with identical hardware and software config-
urations [39, 49, 50, 64]. Such techniques can significantly
empower temporal inconsistencies to detect bots. With FP-
Inconsistent, we used Cookies to identify requests that origi-
nated from the same device. Bots will be able to overcome
our temporal inconsistencies by merely deleting their cook-
ies. Bots would not be able to drop unique identifiers that
originate from the physical properties of hardware that can-
not be modified. However, capturing more attributes as well
as capturing persistent identifiers pose threats to privacy.

8.3 Deployment of filter list rules
FP-Inconsistent generates filter lists of inconsistencies to
improve bot detection (Section 7.3). The anti-tracking com-
munity [2, 25, 32, 34, 45, 54] typically incorporates filter lists
on the client side using browser extensions to block the ex-
ecution of tracking requests and other resources. Similarly,
we envision anti-bot services such as DataDome and BotD to
include FP-Inconsistent’s filter lists as part of their client-side
scripts improved for bot detection.

8.4 Limitations
Our results show that FP-Inconsistent’s rules improve the de-
tection of evasive bots. Evasive bots will be able to overcome
FP-Inconsistent if they evolve to ensure that they can alter
fingerprint attributes without introducing any inconsisten-
cies. Incorporating unmodifiable attributes provides a robust
solution to enhance FP-Inconsistent, but such attributes also
pose threats to privacy.

8.5 Coexistence of Bot Detection and
Privacy-Enhancing Technologies

Our evaluation (Section 7.5) shows that FP-Inconsistent can
detect bots without impeding most commonly used privacy-
enhancing technologies (except Tor). This observation is
interesting because many assume that the goals of bot de-
tection and online tracking are identical. They believe that
enhancements to bot detection would also bolster online
tracking and weaken privacy-enhancing tools.

While bot detection and tracking overlap, tracking is more
complex as it seeks to uniquely identify each user. In con-
trast, bot detection solely seeks to determine if a particular
request was generated by a bot. Accordingly, altering any
fingerprint attribute enhances privacy by making it harder
for trackers to link requests from the same user, even when
other attributes remain unchanged. On the other hand, al-
tering any fingerprint attribute does not necessarily help
bots with evasion since other attributes can still reveal their
presence. This distinction between bot detection and online
tracking allows bot detection systems like FP-Inconsistent
to coexist with privacy-enhancing technologies.

However, given the overlap, certain enhancements to bot
detection such as incorporating more attributes or incor-
porating unmodifiable attributes can threaten user privacy.
Future research focusing on privacy-preserving bot detec-
tion such as identifying the intent behind trackers to not
block those indulging in bot detection or an in-browser de-
tection mechanism can bridge the gap to potentially address
concerns of privacy protection as well as bot detection.

9 CONCLUSION
We find evidence that bots alter fingerprint attributes to
evade detection. However, we find evidence that such eva-
sive bots end up introducing inconsistencies among the fin-
gerprint attributes that can be used for more reliable bot
detection. We propose FP-Inconsistent, a data-driven, semi-
automatic approach to discover inconsistencies in fingerprint
attributes for detecting evasive bots in the wild that are able
to evade detection by anti-bot services. As the arms race be-
tween evasive bots and anti-bot services evolves, it remains
to be seen whether bots can alter their fingerprint attributes
while avoiding inconsistency. We believe that it would be

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

challenging for bots to do so because a browser fingerprint
is a high dimensional feature set with numerous – often
subtle – correlations between attributes that are difficult to
anticipate and account for when altering fingerprints. Put
simply, it is challenging to tell a complex lie while keeping
the story always straight. While FP-Inconsistent rule gen-
eration approach may need to be evolved to generate rules
for other types of consistencies for future generation of bots,
we believe the basic principle will stand over time.

REFERENCES
[1] abrahamjuliot. [n. d.]. CreepJS. https://github.com/abrahamjuliot/cre

epjs.
[2] AdguardTeam. [n. d.]. Adguard Filters. https://github.com/Adguard

Team/AdguardFilters.
[3] Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, and Nick Niki-

forakis. 2020. Web Runner 2049: Evaluating Third-Party Anti-bot
Services. In DIMVA 2020 - 17th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment. Lisboa / Virtual, Portugal.
https://hal.science/hal-02612454

[4] Hadi Askari, Anshuman Chhabra, Bernhard Clemm von Hohenberg,
Michael Heseltine, and Magdalena Wojcieszak. 2024. Incentivizing
News Consumption on Social Media Platforms Using Large Language
Models and Realistic Bot Accounts. arXiv:2403.13362 [cs.SI]

[5] Dylan Cutler Asuman Senol, Alisha Ukani and Igor Bilogrevic. 2024.
The Double Edged Sword: Identifying Authentication Pages and their
Fingerprinting Behavior.

[6] Babylon Traffic. [n. d.]. Boost your business visibility with the best
Traffic Bot. https://www.babylontraffic.com/.

[7] Brave. [n. d.]. Secure, Fast, & Private Web Browser with Adblocker |
Brave. https://brave.com/.

[8] brianhama. [n. d.]. bad-asn-list. https://github.com/brianhama/bad-
asn-list/tree/master.

[9] Alberto Cabri, Grażyna Suchacka, Stefano Rovetta, and Francesco
Masulli. 2018. Online Web Bot Detection Using a Sequential Classifi-
cation Approach. In 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS).

[10] Chia-Mei Chen, Sheng-Tzong Cheng, and Ju-Hsien Chou. 2013. Detec-
tion of fast-flux domains. Journal of Advances in Computer Networks
1, 2 (2013), 148–152.

[11] Elisa Chiapponi, Marc Dacier, Olivier Thonnard, Mohamed Fangar,
Mattias Mattsson, and Vincent Rigal. 2022. An industrial perspective
on web scraping characteristics and open issues. In 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
- Supplemental Volume (DSN-S). 5–8. https://doi.org/10.1109/DSN-
S54099.2022.00012

[12] DataDome. [n. d.]. Bot And Online Fraud Protection Solution. https:
//datadome.co/.

[13] Vacha Dave, Saikat Guha, and Yin Zhang. 2013. ViceROI: Catching
Click-Spam in Search Ad Networks. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security (Berlin,
Germany) (CCS ’13). Association for Computing Machinery, New York,
NY, USA, 765–776. https://doi.org/10.1145/2508859.2516688

[14] Zainul Abi Din, Hari Venugopalan, Jaime Park, Andy Li, Weisu Yin,
HaoHuiMai, Yong Jae Lee, Steven Liu, and Samuel T. King. 2020. Boxer:
Preventing fraud by scanning credit cards. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 1571–1588. ht
tps://www.usenix.org/conference/usenixsecurity20/presentation/din

[15] Erez Hasson. [n. d.]. Evasive Bots Drive Online Fraud. https://www.
imperva.com/blog/evasive-bots-drive-online-fraud-2022-imperva-
bad-bot-report/.

[16] Eugene Belinski. [n. d.]. iOS Ref. https://github.com/ebelinski/iosref.
[17] F5 Inc. [n. d.]. Bot Defense. https://docs.cloud.f5.com/docs/how-

to/advanced-security/bot-defense.
[18] Shehroze Farooqi, Guillaume Jourjon, Muhammad Ikram, Mo-

hamed Ali Kaafar, Emiliano De Cristofaro, Zubair Shafiq, Arik Fried-
man, and Fareed Zaffar. 2017. Characterizing key stakeholders in an
online black-hat marketplace. In 2017 APWG Symposium on Electronic
Crime Research (eCrime). IEEE, 17–27.

[19] Fingerprint. [n. d.]. FingerprintJS. https://github.com/fingerprintjs/f
ingerprintjs.

[20] Fingerprint. [n. d.]. Open-source JavaScript Bot Detection Library.
https://fingerprint.com/products/bot-detection/.

[21] Fingerprint Spoofer. [n. d.]. Fingerprint Spoofer. https://chromewebs
tore.google.com/detail/fingerprint-spoofer/facgnnelgcipeopfbjcajp
aibhhdjgcp.

[22] S. Gianvecchio, Z. Wu, M. Xie, and H. Wang. 2009. Battle of Botcraft:
Fighting Bots in Online Games with Human Observational Proofs. In
Proceedings of the 16th ACM Conference on Computer and Communica-
tions Security.

[23] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang. 2008. Measurement and
Classification of Humans and Bots in Internet Chat. In Proceedings of
the 17th USENIX Symposium on Security.

[24] Google. [n. d.]. Verifying Googlebot and other Google crawlers. https:
//developers.google.com/search/docs/crawling-indexing/verifying-
googlebot.

[25] gorhill. [n. d.]. uBlock Origin. https://github.com/gorhill/uBlock.
[26] Daniel Goßen, Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and

David Roefs. 2021. HLISA: towards a more reliable measurement
tool. In Proceedings of the 21st ACM Internet Measurement Conference
(Virtual Event) (IMC ’21). Association for Computing Machinery, New
York, NY, USA, 380–389. https://doi.org/10.1145/3487552.3487843

[27] growtoups. [n. d.]. Datacenter ASN Blocking. https://github.com/gro
wtoups/ASN_LIST.

[28] Xin Hu, Matthew Knysz, and Kang G Shin. 2009. RB-Seeker: Auto-
detection of Redirection Botnets.. In NDSS.

[29] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kâafar, Bal-
achander Krishnamurthy, and Anirban Mahanti. 2016. Towards
Seamless Tracking-Free Web: Improved Detection of Trackers via
One-class Learning. CoRR abs/1603.06289 (2016). arXiv:1603.06289
http://arxiv.org/abs/1603.06289

[30] Christos Iliou, Theodoros Kostoulas, Theodora Tsikrika, Vasilis Katos,
Stefanos Vrochidis, and Yiannis Kompatsiaris. 2019. Towards a Frame-
work for Detecting Advanced Web Bots. In Proceedings of the 14th
International Conference on Availability, Reliability and Security (ARES
2019). Association for Computing Machinery, New York, NY, USA.

[31] imperva.com. [n. d.]. 2023 Imperva Bad Bot Report. https://www.im
perva.com/resources/resource-library/reports/2024-bad-bot-report/.

[32] Adblock Inc. [n. d.]. Adblock Plus. https://gitlab.com/adblockinc/ext/
adblockplus/adblockplus.

[33] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2020. Fingerprint-
ing the Fingerprinters: Learning to Detect Browser Fingerprinting
Behaviors. CoRR abs/2008.04480 (2020). arXiv:2008.04480 https:
//arxiv.org/abs/2008.04480

[34] Umar Iqbal, Zubair Shafiq, Peter Snyder, Shitong Zhu, Zhiyun Qian,
and Benjamin Livshits. 2018. AdGraph: AMachine Learning Approach
to Automatic and Effective Adblocking. CoRR abs/1805.09155 (2018).
arXiv:1805.09155 http://arxiv.org/abs/1805.09155

[35] Mobin Javed, Cormac Herley, Marcus Peinado, and Vern Paxson. 2015.
Measurement and analysis of traffic exchange services. In Proceedings

https://github.com/abrahamjuliot/creepjs
https://github.com/abrahamjuliot/creepjs
https://github.com/AdguardTeam/AdguardFilters
https://github.com/AdguardTeam/AdguardFilters
https://hal.science/hal-02612454
https://arxiv.org/abs/2403.13362
https://www.babylontraffic.com/
https://brave.com/
https://github.com/brianhama/bad-asn-list/tree/master
https://github.com/brianhama/bad-asn-list/tree/master
https://doi.org/10.1109/DSN-S54099.2022.00012
https://doi.org/10.1109/DSN-S54099.2022.00012
https://datadome.co/
https://datadome.co/
https://doi.org/10.1145/2508859.2516688
https://www.usenix.org/conference/usenixsecurity20/presentation/din
https://www.usenix.org/conference/usenixsecurity20/presentation/din
https://www.imperva.com/blog/evasive-bots-drive-online-fraud-2022-imperva-bad-bot-report/
https://www.imperva.com/blog/evasive-bots-drive-online-fraud-2022-imperva-bad-bot-report/
https://www.imperva.com/blog/evasive-bots-drive-online-fraud-2022-imperva-bad-bot-report/
https://github.com/ebelinski/iosref
https://docs.cloud.f5.com/docs/how-to/advanced-security/bot-defense
https://docs.cloud.f5.com/docs/how-to/advanced-security/bot-defense
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://fingerprint.com/products/bot-detection/
https://chromewebstore.google.com/detail/fingerprint-spoofer/facgnnelgcipeopfbjcajpaibhhdjgcp
https://chromewebstore.google.com/detail/fingerprint-spoofer/facgnnelgcipeopfbjcajpaibhhdjgcp
https://chromewebstore.google.com/detail/fingerprint-spoofer/facgnnelgcipeopfbjcajpaibhhdjgcp
https://developers.google.com/search/docs/crawling-indexing/verifying-googlebot
https://developers.google.com/search/docs/crawling-indexing/verifying-googlebot
https://developers.google.com/search/docs/crawling-indexing/verifying-googlebot
https://github.com/gorhill/uBlock
https://doi.org/10.1145/3487552.3487843
https://github.com/growtoups/ASN_LIST
https://github.com/growtoups/ASN_LIST
https://arxiv.org/abs/1603.06289
http://arxiv.org/abs/1603.06289
https://www.imperva.com/resources/resource-library/reports/2024-bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/2024-bad-bot-report/
https://gitlab.com/adblockinc/ext/adblockplus/adblockplus
https://gitlab.com/adblockinc/ext/adblockplus/adblockplus
https://arxiv.org/abs/2008.04480
https://arxiv.org/abs/2008.04480
https://arxiv.org/abs/2008.04480
https://arxiv.org/abs/1805.09155
http://arxiv.org/abs/1805.09155

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

of the 2015 Internet Measurement Conference. 1–12.
[36] Jing Jin, Jeff Offutt, Nan Zheng, Feng Mao, Aaron Koehl, and Haining

Wang. 2013. Evasive Bots Masquerading as Human Beings on the Web.
In 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, New York, NY, USA, 1–12. https:
//doi.org/10.1109/DSN.2013.6575366

[37] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Pana-
giotis Papadopoulos, Matteo Varvello, Benjamin Livshits, and Alexan-
dros Kapravelos. 2021. Towards Realistic and ReproducibleWeb Crawl
Measurements (WWW ’21). Association for Computing Machinery,
New York, NY, USA, 80–91. https://doi.org/10.1145/3442381.3450050

[38] Faezeh Kalantari, Mehrnoosh Zaeifi, Yeganeh Safaei, Marzieh Bitaab,
AdamOest, Gianluca Stringhini, Yan Shoshitaishvili, and AdamDoupé.
2024. Browser Polygraph: Efficient Deployment of Coarse-Grained
Browser Fingerprints for Web-Scale Detection of Fraud Browsers.
In Proceedings of the 2024 ACM on Internet Measurement Conference.
https://doi.org/10.1145/3646547.3688455

[39] Tomer Laor, Naif Mehanna, Antonin Durey, Vitaly Dyadyuk, Pierre
Laperdrix, Clé mentine Maurice, Yossi Oren, Romain Rouvoy, Walter
Rudametkin, and Yuval Yarom. 2022. DRAWN APART : A Device
Identification Technique based on Remote GPU Fingerprinting. In
Proceedings 2022 Network and Distributed System Security Symposium.
Internet Society. https://doi.org/10.14722/ndss.2022.24093

[40] Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. 2021.
Good Bot, Bad Bot: Characterizing Automated Browsing Activity. In
2021 IEEE Symposium on Security and Privacy (SP). 1589–1605. https:
//doi.org/10.1109/SP40001.2021.00079

[41] Zengrui Liu, Prakash Shrestha, and Nitesh Saxena. 2022. Gummy
browsers: targeted browser spoofing against state-of-the-art finger-
printing techniques. In International Conference on Applied Cryptogra-
phy and Network Security. Springer, 147–169.

[42] MaxMind. 2024. MaxMind GeoIP Databases. https://www.maxmind.
com/en/geoip-databases.

[43] MaxMind. 2024. MaxMind minFraud Services. https://www.maxmind.
com/en/solutions/fraud-prevention/overview.

[44] Mozilla. [n. d.]. Date.prototype.getTimezoneOffset(). https://develper
.mozilla.org/enUS/docs/Web/JavaScript/Reference/Global_Objects
/Date/getTimezoneOffset.

[45] Shaoor Munir, Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair
Shafiq, and Carmela Troncoso. 2023. COOKIEGRAPH: Understanding
and Detecting First-Party Tracking Cookies. arXiv:2208.12370 [cs.CR]

[46] Yoshimichi Nakatsuka, Ercan Ozturk, Andrew Paverd, and Gene
Tsudik. 2021. CACTI: Captcha Avoidance via Client-side TEE In-
tegration. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, 2561–2578. https://www.usenix.org/conferenc
e/usenixsecurity21/presentation/nakatsuka

[47] Minh Hieu Nguyen Ba, Jacob Bennett, Michael Gallagher, and Suman
Bhunia. 2021. A Case Study of Credential Stuffing Attack: Canva Data
Breach. In 2021 International Conference on Computational Science and
Computational Intelligence (CSCI). 735–740. https://doi.org/10.1109/
CSCI54926.2021.00187

[48] OpenWPM. [n. d.]. A web privacy measurement framework. https:
//github.com/openwpm/OpenWPM.

[49] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2018. Clock
Around the Clock: Time-Based Device Fingerprinting. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (Toronto, Canada) (CCS ’18). Association for
Computing Machinery, New York, NY, USA, 1502–1514. https:
//doi.org/10.1145/3243734.3243796

[50] Andre Schaller, Wenjie Xiong, Nikolaos Athanasios Anagnostopoulos,
Muhammad Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser,
and Jakub Szefer. 2017. Intrinsic Rowhammer PUFs: Leveraging the

Rowhammer effect for improved security. In 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE.
https://doi.org/10.1109/hst.2017.7951729

[51] Andrew Searles, Yoshimichi Nakatsuka, Ercan Ozturk, Andrew Paverd,
Gene Tsudik, and Ai Enkoji. 2023. An Empirical Study & Evaluation
of Modern CAPTCHAs. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 3081–3097. https:
//www.usenix.org/conference/usenixsecurity23/presentation/searles

[52] seoclerks. [n. d.]. SEO Marketplace for backlinks, web design, website
traffic, and online marketing. https://www.seoclerks.com/.

[53] SHapley Additive exPlanations. [n. d.]. Welcome to the SHAP docu-
mentation. https://shap.readthedocs.io/en/latest/.

[54] Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and
Carmela Troncoso. 2022. WebGraph: Capturing Advertising and Track-
ing Information Flows for Robust Blocking. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA,
2875–2892. https://www.usenix.org/conference/usenixsecurity22/p
resentation/siby

[55] Spark Traffic. [n. d.]. Comprehensive Marketing Suite for better SEO
ranking. https://www.sparktraffic.com/.

[56] Kevin Springborn and Paul Barford. 2013. Impression Fraud in On-
line Advertising via Pay-Per-View Networks. In 22nd USENIX Security
Symposium (USENIX Security 13). USENIX Association, Washington,
D.C., 211–226. https://www.usenix.org/conference/usenixsecurity13
/technical-sessions/paper/springborn

[57] StatCounter. 2024. Browser Market Share Worldwide. https://gs.statc
ounter.com/browser-market-share.

[58] TechReport. [n. d.]. Most Important Brave Market Share Statistics in
2024. https://techreport.com/statistics/software-web/brave-market-
share-statistics/.

[59] Tor. [n. d.]. A website I am trying to reach is blocking access over Tor.
https://support.torproject.org/tbb/website-blocking-tor/.

[60] Tor. [n. d.]. You have a right to BROWSE without being watched.
https://www.torproject.org/download/languages/.

[61] U.S. Department of Health and Human Services. 2018. Decision Charts:
2018 Requirements (Common Rule). https://www.hhs.gov/ohrp/reg
ulations-and-policy/decision-charts-2018/index.html#c1

[62] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain
Rouvoy. 2018. FP-STALKER: Tracking Browser Fingerprint Evolutions.
In 2018 IEEE Symposium on Security and Privacy (SP). 728–741. https:
//doi.org/10.1109/SP.2018.00008

[63] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc.
2020. FP-Crawlers: Studying the Resilience of Browser Fingerprint-
ing to Block Crawlers. In MADWeb’20 - NDSS Workshop on Measure-
ments, Attacks, and Defenses for the Web, Oleksii Starov, Alexandros
Kapravelos, and Nick Nikiforakis (Eds.). San Diego, United States.
https://doi.org/10.14722/ndss.2020.23xxx

[64] Hari Venugopalan, Kaustav Goswami, Zainul Abi Din, Jason Lowe-
Power, Samuel T. King, and Zubair Shafiq. 2023. Centauri: Practical
Rowhammer Fingerprinting. arXiv:2307.00143 [cs.CR]

[65] Chrome Webstore. 2024. Adblock Plus. https://chromewebstore.googl
e.com/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccdd
ilifddb.

[66] Chrome Webstore. 2024. uBlock Origin. https://chromewebstore.goo
gle.com/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm.

[67] Shujiang Wu, Pengfei Sun, Yao Zhao, and Yinzhi Cao. 2023. Him
of Many Faces: Characterizing Billion-scale Adversarial and Benign
Browser Fingerprints on Commercial Websites. In 30th Annual Net-
work and Distributed System Security Symposium, NDSS 2023, San Diego,
California, USA, February 27 - March 3, 2023. The Internet Society.

[68] XGBoost. [n. d.]. XGBoost Documentation. https://xgboost.readthed
ocs.io/en/stable/.

https://doi.org/10.1109/DSN.2013.6575366
https://doi.org/10.1109/DSN.2013.6575366
https://doi.org/10.1145/3442381.3450050
https://doi.org/10.1145/3646547.3688455
https://doi.org/10.14722/ndss.2022.24093
https://doi.org/10.1109/SP40001.2021.00079
https://doi.org/10.1109/SP40001.2021.00079
https://www.maxmind.com/en/geoip-databases
https://www.maxmind.com/en/geoip-databases
https://www.maxmind.com/en/solutions/fraud-prevention/overview
https://www.maxmind.com/en/solutions/fraud-prevention/overview
https://develper.mozilla.org/enUS/docs/Web/JavaScript/Reference/Global_Objects/Date/getTimezoneOffset
https://develper.mozilla.org/enUS/docs/Web/JavaScript/Reference/Global_Objects/Date/getTimezoneOffset
https://develper.mozilla.org/enUS/docs/Web/JavaScript/Reference/Global_Objects/Date/getTimezoneOffset
https://arxiv.org/abs/2208.12370
https://www.usenix.org/conference/usenixsecurity21/presentation/nakatsuka
https://www.usenix.org/conference/usenixsecurity21/presentation/nakatsuka
https://doi.org/10.1109/CSCI54926.2021.00187
https://doi.org/10.1109/CSCI54926.2021.00187
https://github.com/openwpm/OpenWPM
https://github.com/openwpm/OpenWPM
https://doi.org/10.1145/3243734.3243796
https://doi.org/10.1145/3243734.3243796
https://doi.org/10.1109/hst.2017.7951729
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://www.seoclerks.com/
https://shap.readthedocs.io/en/latest/
https://www.usenix.org/conference/usenixsecurity22/presentation/siby
https://www.usenix.org/conference/usenixsecurity22/presentation/siby
https://www.sparktraffic.com/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/springborn
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/springborn
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://techreport.com/statistics/software-web/brave-market-share-statistics/
https://techreport.com/statistics/software-web/brave-market-share-statistics/
https://support.torproject.org/tbb/website-blocking-tor/
https://www.torproject.org/download/languages/
https://www.hhs.gov/ohrp/regulations-and-policy/decision-charts-2018/index.html#c1
https://www.hhs.gov/ohrp/regulations-and-policy/decision-charts-2018/index.html#c1
https://doi.org/10.1109/SP.2018.00008
https://doi.org/10.1109/SP.2018.00008
https://doi.org/10.14722/ndss.2020.23xxx
https://arxiv.org/abs/2307.00143
https://chromewebstore.google.com/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilifddb
https://chromewebstore.google.com/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilifddb
https://chromewebstore.google.com/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilifddb
https://chromewebstore.google.com/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://chromewebstore.google.com/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

[69] Kazuki Yasuhara, Naoki Kodama, and Takamichi Saito. 2024. Chal-
lenges in Web Bot Detection and Detection Evasion Technologies. In
Advances in Network-Based Information Systems, Leonard Barolli (Ed.).
Springer Nature Switzerland, Cham, 162–173.

A ETHICS
This study complies with ethical guidelines for research in-
volving data collection and usage. To conduct the research,
we paid a small amount to bot operators to generate requests
directed solely to our honey site. To ensure data quality and
realism, we prioritized bot services with high ratings and
traffic advertised as realistic and organic. These requests
were analyzed exclusively for research purposes, with the
goal of improving bot detection.
The research process was reviewed and approved by our

university, ensuring alignment with ethical principles out-
lined in both the Belmont Report and the Menlo Report.
To determine whether Institutional Review Board (IRB) ap-
proval was necessary, we consulted official guidelines from
the Human Subject Regulations Decision Charts [61], specif-
ically the section addressing activities covered by 45 CFR
Part 46. Based on this evaluation, we determined that our
research does not involve human subjects as defined by 45
CFR Part 46 and, as a result, qualifies for exemption from
IRB oversight.
Furthermore, our study did not collect or store any Per-

sonally Identifiable Information (PII), nor did it involve the
identification or tracking of individual users across differ-
ent websites/contexts. Traffic data was analyzed in aggre-
gate, and identifiable information, such as IP addresses, was
hashed before storage.

All purchased traffic was directed exclusively towards our
honey site, ensuring that no other sites or users were im-
pacted. The primary purpose of this research was to advance
the science of bot detection, and we refrained from monetiz-
ing the honey site or deriving any profit from the generated
traffic.

B COMPARISON OF APIS USED BY BOTD
AND DATADOME

Table 5 shows the different APIs accessed by BotD and Data-
Dome scripts on our honey site.

C COMBINATION OF FINGERPRINT
ATTRIBUTES TO EVADE DATADOME

We visualized the XGBoost decision tree for DataDome de-
scribed in Section 5.2. The tree with a depth of 5 indicated
that all 44,168 requests having a Screen Frame value less
than 20 that do not support the Chrome PDF Viewer plugin,
having memory over 256 MB with less than 14 CPU cores

Table 5: Comparison of browser APIs read by Data-
Dome and BotD

Browser API DataDome BotD

Display

window.screen.colorDepth
HTMLCanvasElement.getContext

Navigator

window.navigator.webdriver
window.navigator.vendor
window.navigator.userAgent
window.navigator.serviceWorker
window.navigator.productSub
window.navigator.plugins
window.navigator.platform
window.navigator.permissions
window.navigator.oscpu
window.navigator.mimeTypes
window.navigator.mediaDevices
window.navigator.maxTouchPoints
window.navigator.languages
window.navigator.language
window.navigator.hardwareConcurrency
window.navigator.buildID
window.navigator.appVersion
window.navigator.__proto__

Storage

window.sessionStorage
window.localStorage
window.document.cookie

Mouse Movements

MouseEvent.type
MouseEvent.timeStamp
MouseEvent.clientY
MouseEvent.clientX
addEventListner: mouseup
addEventListner: mousemove
addEventListner: mousedown

Miscellaneous

addEventListner: asyncChallengeFinished
addEventListner: pagehide
Performance.now

having the width of Monospace font used in FingerprintJS
larger than 131.5 were able to evade detection.

D ALGORITHM TO IDENTIFY SPATIAL
INCONSISTENCIES

Algorithm 1 describes our algorithm to identify spatial in-
consistencies.

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

Table 6: Inconsistencies Identified

Attribute Group Attributes Examples

Screen

(UA Device, Screen Resolution)

(iPhone, 1920x1080)
(iPhone, 847x476)
(iPad, 900x1600)
(Samsung SM-S906N, 1920x1080)
(M2006C3MG, 800x360)
(Mac, 656x1364)

(UA Device, Touch Support)

(iPhone, None)
(Mac, touchEvent/touchStart)
(Samsung SM-A127F, None)
(M2004J19C, None)
(Infinix X652B, None)

(UA Device, Max Touch Points)

(iPhone, 1)
(iPhone, 0)
(iPad, 1)
(iPad, 7)
(Mac, 10)
(Samsung SM-A515F, 0)
(Pixel 7 Pro, 0)

(UA Device, Color Depth) (iPhone, 16)
(iPad, 16)

(UA Device, Color Gamut) (Samsung Galaxy Tab S7, (p3, rec2020))
(SAM Galaxy S10 Smartphone, (p3, rec2020))

Device

(UA Device, Device Memory)

(XiaoMi Mi Pad4 LTE, 8)
(Samsung SM-T387W, 4)
(MiPad 3, 8)
(Samsung SM-A515F, 1)
(XiaoMi Redmi Go, 8)

(UA Device, Hardware Concurrency)

(iPhone, 3)
(iPhone, 32)
(Mac, 48)
(iPad, 32)
(XiaoMi Mi Pad5 Wi-Fi, 1)
(Pixel 2, 32)

Browser

(UA Browser, UA OS)
(Safari, Linux)
(Samsung Internet, Linux)
(MiuiBrowser, Linux)
(Safari, Windows)

(UA Browser, Vendor) (Mobile Safari, Google Inc.)
(Chrome Mobile, Apple Computer, Inc.)

(UA Browser, Platform)

(Mobile Safari, Linux x86_64)
(Chrome Mobile, Win32)
(Chrome Mobile, Linux x86_64)
(Chrome Mobile iOS, Win32)

Location (IP Location, Time Zone)

(France/Hauts-de-France, America/Los Angeles)

(Germany/Sachsen, America/Los Angeles)

(Singapore/Singapore, America/Los Angeles)

(United States of America/California, Asia/Shanghai)

(United States of America/Virginia, Pacific/Auckland)

Browser
(Platform, Vendor)

(Linux armv5tejl, Apple Computer, Inc)

(Linux aarch64, Apple Computer, Inc.)

(Linux armv6l, Apple Computer, Inc.)

(Win32, Apple Computer, Inc.)

(Linux armv8l, Apple Computer, Inc.)

(Platform, UA OS)

(Mobile Safari, Linux x86_64)
(Linux armv8l, Mac OS X)
(iPad, Android)
(Chrome Mobile iOS, Win32)
(Linux i686, Mac OS X)

Hari Venugopalan, Shaoor Munir, Shuaib Ahmed, Tangbaihe Wang, Samuel T. King, and Zubair Shafiq

Algorithm 1 Algorithm to Detect Spatial Inconsistencies
1: Input: Attribute categories 𝐹 , Dataset containing re-

quests 𝐷 , Labels for requests 𝐿 (true if the request is
from a bot, false for human)

2: for all 𝑓 ∈ 𝐹 do
3: for all attribute pairs {𝑓𝑎, 𝑓𝑏} ⊆ 𝑓 do
4: Filter 𝐷 where 𝐿 is false, creating 𝐷 ′

5: Create tuples (𝑣 𝑓𝑎 , 𝑛𝑣 𝑓𝑏), where 𝑣 𝑓𝑎 is the value of 𝑓𝑎
and 𝑛𝑣 𝑓𝑏 is the number of unique values of 𝑓𝑏 found
in the same row as 𝑣 𝑓𝑎 in 𝐷 ′

6: Sort the tuples in increasing order of 𝑛𝑣 𝑓𝑏
7: for all (𝑣 𝑓𝑎 , 𝑛𝑣 𝑓𝑏) in the sorted order do
8: if the combination is inconsistent then
9: Label all rows in𝐷 containing (𝑣 𝑓𝑎 , 𝑣 𝑓𝑏) as true
10: end if
11: end for
12: end for
13: end for

E INCONSISTENCIES IDENTIFIED
Table 6 lists some examples of the inconsistencies that we
identified for each attribute group in Table 7.

F ATTRIBUTE CATEGORIES FOR
INCONSISTENCY ANALYSIS

Table 7 list different categories of attributes used for incon-
sistency analysis.

G DATADOME AND BOTD ON BRAVE
AND TOR TRAFFIC

Roughly after the first 10 requests on each device, DataDome
starts detecting all requests from Brave as bots resulting in
a false positive rate of 41% on the 300 requests described
in Section 7.5. BotD on the other hand does not detect any
requests as bots.

Similar to FP-Inconsistent, DataDome detects all requests
from Tor browser as bots while BotD does not detect any
requests as bots. This further sheds light on the difficulty in
distinguishing between Tor and bot traffic.

FP-Inconsistent: Measurement and Analysis of Fingerprint Inconsistencies in Evasive Bot Traffic

Table 7: Attribute Categories

Category Attributes

Screen UA Device, Color Depth, Screen Resolution, Touch Support, Max Touch Points, HDR, Contrast, Reduced Motion
Device UA Device, Device Memory, Hardware Concurrency, UA OS
Browser UA Browser, Plugins, Platform, UA OS, UA Vendor, Vendor, Vendor Flavors
Location IP Location, Timezone, Languages

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Evaluation of bot detection services
	2.2 Analysis of bot traffic in the wild
	2.3 Challenges in bot detection

	3 Threat Model
	4 Measurement infrastructure
	4.1 Honey site architecture
	4.2 Anti-bot services
	4.3 Bot services
	4.4 Data Collection

	5 Analysis
	5.1 IP addresses for evasion
	5.2 Fingerprint attributes for evasion
	5.3 Fingerprint attributes among evasive bots

	6 Inconsistency analysis
	6.1 Inconsistencies across fingerprint attributes
	6.2 Inconsistencies across fingerprint attributes and IP addresses
	6.3 Inconsistencies across time

	7 FP-Inconsistent
	7.1 Identifying spatial inconsistencies
	7.2 Identifying temporal inconsistencies
	7.3 Improved bot detection
	7.4 Real user traffic
	7.5 Privacy-enhancing browsers

	8 Discussion
	8.1 Overcoming false positives
	8.2 Improving FP-Inconsistent
	8.3 Deployment of filter list rules
	8.4 Limitations
	8.5 Coexistence of Bot Detection and Privacy-Enhancing Technologies

	9 Conclusion
	References
	A Ethics
	B Comparison of APIs used by BotD and DataDome
	C Combination of fingerprint attributes to evade DataDome
	D Algorithm to identify spatial inconsistencies
	E Inconsistencies Identified
	F Attribute Categories for Inconsistency analysis
	G DataDome and BotD on Brave and Tor traffic

