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Abstract1

As smartphone-based Human Mobility Systems (HMSes) shift from informing individuals to influ-2
encing public asset allocation, it is critical to assess how well they perform. Evaluation techniques3
of HMSes have typically been ad-hoc, limited to single measurements and ignored power-accuracy4
tradeoffs. These tradeoffs are important due to built-in and context-sensitive sensing in the phones5
- e.g. “Find my iPhone" or “Doze mode".6

Treating HMSes as physical instruments with inherent physical noise, we propose a novel7
evaluation procedure that uses artificial trips and multiple parallel phones to provide controlled,8
repeated inputs to the HMSes under test. Artificial trips mitigate privacy concerns and allow re-9
peatability while efficiently exploring a wide variety of trip contexts. Parallel sensing with control10
phones mitigates the effects of context sensitive power consumption and inherent sensing error.11

We use this procedure to create three artificial timelines with 15 different modes, including12
ebike and escooter. We travel these three timelines three times each to collect and publish a dataset13
with over 500 hours of ground truthed data. We use this data to explore the tradeoffs for power14
versus spatial and temporal accuracy.15

Our results show the benefits of thinking statistically about HMSes. They control for out-16
liers, revealing meaningful signals about the behavior of smartphone virtual sensors that are rele-17
vant to instrumenting human travel behavior. If adopted widely by the community, the resulting18
ground truthed, tradeoff-aware, public datasets can form the basis for additional HMS optimiza-19
tions.20
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INTRODUCTION1
Inspired by the popularity of smartphone-based personal fitness tracking, the transportation com-2
munity aims to build Human Mobility Systems (HMSes) that can automatically track and classify3
multi-modal travel patterns. Such systems can replace expensive and infrequent travel surveys with4
long-term, largely passive data collection augmented with intermittent surveys focused on percep-5
tual data. Such data collection can capture changes in travel behavior as they occur and open new6
avenues for responsive urban planning.7

While there has been much work on building HMSes, both in academia and in industry, the8
procedure to evaluate them has largely been an afterthought. Careful evaluations are critical as we9
move from the personal to the societal domain. Users who make decisions based on self-tracking10
have an intuition of its accuracy based on their experienced ground truth. The decisions are low-11
stakes lifestyle changes, which may be personally meaningful, but are not societally contentious.12
However, a Metropolitan Transportation Agency picking projects and allocating millions of dollars13
in funding needs to know the accuracy of the data before making its decisions (18).14

The typical HMS evaluation procedure (e.g. Quantified Traveler (7), prior versions of our15
work (8, 17)) is ad-hoc and also functions as a pilot - a small (≈ 3-12) set of the author’s friends16
and family are recruited to install the app component of the HMS on their phones, and go about17
their daily life for a few days or weeks while annotating the trips with “ground truth". The ground18
truth annotation can either directly happen on the app, or through a recap at the end of the day.19
Conscientious researchers may ensure that the set of evaluators are demographically diverse, in an20
attempt to evaluate against a richer set of travel patterns.21

While this procedure imposes little additional researcher burden, it conflates the experi-22
mental procedure (understanding human travel behavior in the wild) with the evaluation procedure23
(evaluating the instrument that will measure the human travel behavior). The first is trying to24
understand behavior, so it needs human diversity. The second is trying to understand sensing25
parameters, so it needs diversity of trip types. The human functions as a phone transportation26
mechanism during evaluation and could be profitably replaced with a self-navigating robot if one27
was available.28

An analogy with classic physical measurements may be useful. Consider the situation in29
which a researcher wants to collect data on the weight distribution of the population in a particular30
region. Since there are currently no certifying bodies for travel diaries, let us pretend that she31
cannot purchase a pre-certified scale. How would she evaluate the available scales before starting32
her experiment?33

The analog to ad-hoc evaluation procedure would involve recruiting several of her friends34
and family to weigh themselves on the scales and compare the reported weight with their true35
weight. This analogy clearly reveals some of the limitations of the ad-hoc procedure: (i) How does36
she trust that the self-reported weights are “true"? (ii) If all her friends are adults weighing 55kg37
- 75kg, how does she know how the scales perform outside that range? She can overcome the38
range limitations by recruiting an broader set of testers, e.g. through an intercept survey. However,39
that modification makes the ground truth limitation worse, since it is less likely that strangers will40
reveal their true weight. A further modification might pay contributors to improve the self-reported41
accuracy, but at this point, she is essentially running the experiment.42

A more robust evaluation procedure would involve choosing known weights across a broad43
range (e.g. 0kg to 300kg in 10kg increments) and comparing them to the reported weights. Since44
no instrument is perfect, there is likely to be some variation in the values reported. She would45
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likely repeat the experiments multiple times in order to establish error bounds.1
HMS evaluation procedures need to be more sophisticated than simple physical measure-2

ments since: (i) their operation is based on prior behavior (e.g. HMS duty cycling, android doze3
mode) and the potential for feedback loops makes it important to control the sequence of evalua-4
tion operations, (ii) unlike a physical scale, which has a fixed one-time cost, they have an ongoing,5
variable cost in terms of battery drain, so the evaluation must assess the power/accuracy tradeoff,6
and (iii) unlike scalar weight data, HMSes generate strongly correlated timeseries data, which is7
extremely hard to deanonymize.8

The main contributions in this paper are:9
1. We propose an evaluation procedure for HMSes based on pre-defined, ground truthed,10

artificial trips and outline how it addresses the above challenges11
2. We describe the design of a cross-platform evaluation system that can be used to per-12

form such evaluations reproducibly and publish the results.13
3. We use this system to evaluate the power/accuracy tradeoffs of the android and iOS14

location, motion accuracy and visit detection virtual sensors in the San Francisco Bay15
Area.16

The rest of this paper is structured as follows. In Section 2 we outline an experiment proce-17
dure that can control for data collection inconsistencies, and discuss some alternative approaches18
in Section 3. We place the procedure in the context of prior work in Section 4, and describe the19
reference implementation in Section 5. In Section 6 we outline a specific experiment involving20
15 different modes, and use it to evaluate the power/accuracy tradeoff results for various virtual21
sensors, concluding with Section 7.22

CONTROLLED EVALUATION OF CONTEXT-SENSITIVE BEHAVIOR23
As discussed in Section 1, instruments are typically evaluated by repeatedly exposing them to24
controlled inputs to determine their error characteristics. In the case of complex systems such as25
HMSes, the evaluation needs additional controls for feedback loops, cost/accuracy tradeoffs and26
privacy considerations. In this section, we outline EM-EVAL a procedure for HMS evaluation that27
addresses these concerns with two techniques that are novel in this domain:28

(i) pre-defined, artificial trips that support spatial ground truth, preserve privacy, in-29
crease the breadth of trip types and support repetitions for establishing error bounds,30
and31

(ii) power and accuracy control phones carried at the same time as the experimental32
phones, that can cancel out context-sensitive variations in power and accuracy.33

Artificial timeline34
The core of the experimental procedure is the pre-defined specification of a sequence of artificial35
trips, potentially with multiple legs or sections per trip. The trajectory and mode of travel is36
also pre-defined. The data collector completes the timeline trips by strictly following the specified37
trajectory and mode while carrying multiple phones that collect data simultaneously using different38
configurations.39

The specified pre-defined trajectories provide spatial ground truth. We do not pre-define40
temporal ground truth since it is extremely hard to control for differences in walking speeds, de-41
lays due to traffic conditions, etc. We use manual input from the data collector to collect coarse42
temporal “ground truth" of the transitions along the timeline. We do not use manual input for fine-43
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grained temporal ground truth along the trajectory because: (i) human response times are too slow1
for fine-grained temporal ground truth during motorized transportation, and (ii) distracting the data2
collector during active transportation can be risky.3

Using an artificial timeline addresses several of the unique challenges associated with HMS4
evaluation.5

Privacy Since the trips are artificial, they preserve the data collector’s privacy. Even if his6
adversaries would download the trips, they would not be able to learn anything about his normal7
travel patterns.8

Spatial ground truth Since even high accuracy (GPS-based) data collection has errors,9
pre-defining spatial ground truth allows us to resolve discrepancies (Section 3) and compute the10
true accuracy.11

Breadth and variety of trips Artifical trips allow efficient exploration of the breadth of12
the trip space. For example, the trips could include novel modes such as e-scooters and e-bikes, or13
specify different contexts for conventional modes, such as express bus versus city bus.14

Repetitions Since the trips are pre-defined, they can be repeated exactly. This allows us to15
use standard variance and outlier detection to estimate error bounds on the measured values.16

Control phones17
The artificial trips give us spatial ground truth, but they do not give us cost (power consumption)18
or temporal ground truth.19

We control for the cost through the use of the use of multiple phones, carried at the same20
time by the data collector. The phones carried by the data collector are divided into control phones21
and experiment phones. The control phones represent the baseline along each of the axes in our22
tradeoff and the experiment phones implement a custom sensing regime that is at some intermedi-23
ate point. The evaluation procedure allows us to determine those points.24

Power The power control phone captures the baseline power consumption of a phone that25
is not being used for tracking by a HMS. This does not mean that the phone is idle - phone OSes26
(e.g. iOS or android) are complex, context-sensitive systems that perform their own location track-27
ing (e.g. “Find my iPhone") and their own duty cycling (Figure 1). Using a power control allows28
us to identify the additional power consumed by the HMS, even if it is context sensitive.29

Accuracy The accuracy control captures the upper bound on the accuracy of a particular30
class of smartphones given sensor and OS limitations. While we would like to compare the exper-31
imental accuracy to ground truth, (i) all sensors have errors, so ground truth is not achievable in32
practice, (ii) artificial trips give us spatial but not temporal ground truth, and (iii) GIS-based trajec-33
tory specifications do not have an associated power tradeoff. Using an accuracy control allows us34
to compare the experimental data collection against the best achievable data collection, in addition35
to the ground truth.36

DISCUSSION OF ALTERNATIVE PROCEDURES37
While EM-EVAL (Section 2) addresses the complexities of HMS evaluation, it also imposes a much38
higher researcher burden than the ad-hoc method. This raises the question of whether all these39
controls are necessary or merely sufficient. In this section, we discuss some alternative approaches40
and highlight the unexpected behavior that they would miss. This list is not comprehensive but41
provides a flavor of the arguments without tedious repetition.42
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FIGURE 1: Top: Power variation illustrated by duty cycling on android. All the phones were
configured identically, and placed in the same environment. The built-in duty cycling on android
switches all phones to low power mode at around 1 hr. However, phone 1, on run 1 alone, switches
back to high power mode at around 12.5 hours. Repeating experiments allows us to distinguish
the first consistent duty cycle and the second outlier. Bottom: Accuracy variation illusrated by
mismatched timestamps during trajectory data collection. Both trajectories are collected from
identical phones during a subway trip. Point 74 has an accuracy radius of only 12, but its timestamp
is in June instead of July! Spatial ground truth allows us to sort out the varying accuracies here.



Shankari, Hari, Culler and Katz 6

No artificial trips1
Creating pre-determined trips requires an upfront investment in effort, and requires the data collec-2
tor to take trips just for data collection. An alternative would use multiple phones, but allow data3
collectors to go about their regular routines and tag the modes only. We could use the accuracy4
control phones to determine the ground truth trajectory.5

No privacy Capturing the data collector’s regular routines compromises their privacy. Even6
if the data does not include their name or phone number, a list of their commonly visited places7
and trips can form a unique fingerprint that can uniquely identify them (2, 19). This sensitivity8
precludes evaluation data from being published and used for reproducible research.9

No repetition The behavior of the same phone with the same configuration can vary over10
time, both for power and for accuracy (Figure 1). Repeating the same trip multiple times allows us11
to detect and remove outliers. With ad-hoc trips, it is unclear whether any difference in behavior12
is real or caused by context-sensitive variation. And without pre-determined trips, it is challenging13
to repeat the same trips and trajectories over time.14

No spatial ground truth No sensor is perfect and even the accuracy control phones can15
have sensing errors. If we see a divergence between an experiment phone and the accuracy control,16
it is unclear which one has the error (Figure 1).17

No control18
Using control phones requires the researcher to purchase multiple phones of the same make, model19
and approximate age. While used smartphones are relatively cheap (USD 50 - USD 100), 4 android20
phone and 4 iPhones combined will still cost USD 400 - USD 800. An alternative would be to21
use one phone each for each OS, perform the timeline trips, and look at the app-based power22
consumption reported by the phone OS?23

Sensor access attribution and the meaning of the % Sensor access in modern phone OSes24
(android and iOS) is also context-sensitive, making it unclear how it is counted for per-app con-25
sumption. For example, if multiple apps request a sensor reading, the OS delays returning a result26
until it can batch related requests and serve all of them with a single sensor access. This is why27
the OSes treat the sensing frequency as a hint instead of a guarantee. Second, if sensor access28
is mediated by a service (e.g. fused location in Google Play Services), it is unclear whether the29
sensor access is counted for the service or the app (Figure 2). And finally, although android reports30
per app consumption as a % of the battery capacity, iOS does so as a % of the battery consump-31
tion. This indicates that on dedicated phones, the HMS under test will always show close to 100%,32
whether it is the power control or the accuracy control (Figure 2). Using a control phone for the33
power will cancel out these context sensitive effects and estimate the difference in power drain34
with and without the HMS app component installed.35

Custom duty cycling increases power drain Sensing is not the only source of power con-36
sumption - CPU usage can also have a significant impact on power usage. HMSes can use smart37
local processing to reduce local sensing, but the increased power consumption from the CPU can38
cancel out the savings from the sensing. Including an accuracy control showed that the basic duty39
cycling algorithm in our experiment paid for itself in low frequency sensing but actually increased40
power usage for high frequency sensing (Figure 2).41
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FIGURE 2: Top left: iOS power control phone with the sensing app consuming 100% but of
a power drain of only 2% over the entire day. Top right: android phone showing Google Play
services as a separate power consumer.Bottom: Explicit duty cycling causes increased power drain
at high frequencies, possibly due to greater CPU power consumption. Note that the battery drain
flattens out on all curves during the middle, stationary part. The main difference is in the rate
of power drain while moving: low frequency sensing consumes the least power, and the checks
for android’s built-in duty cycling appear to be optimized to be more efficient than our simple
implementation.
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RELATED WORK1
Human Mobility Systems (HMSes) are complex to evaluate (Section 3). Other researchers have2
identified similar challenges as part of survey papers (e.g. phone context, privacy, learning, scal-3
ing (9), varying metrics and time scales across research areas (13)). However, to the best of our4
knowledge, there is no proposed solution that addresses all of them.5

Papers related to instrumenting travel behavior fall into three main categories; we list some6
work from each as an example. A comprehensive classification of papers into categories is beyond7
the scope of this paper.8

Context sensitive sensing algorithms: power without accuracy9
This research area focuses on context sensitive, adaptive power management of sensors. Papers10
such as ACE (11) and Jigsaw (10) compare their power requirements to naive sensing techniques.11
However, their accuracy evaluations focus on the localization error (Jigsaw), or comparison to12
naive inferred results1 (ACE).13

Travel diary systems: compare to manual surveys14
There is a vast variety of one-off travel diary systems that combine smartphone based sensing with15
cloud-based processing to generate travel diaries. Systems such as such as Data Mobile (12), Fu-16
ture Mobility Study (FMS) (1, 6) and rMove (5) aim to replace the paper and telephone based17
Household Travel Surveys with smartphone and cloud based systems. So they evaluate the ac-18
curacy of their systems against the traditional methods, not against ground truth. This can show19
that smartphone based methods are significantly better than traditional methods, but not provide a20
quantitative estimate of the accuracy of their system. Similarly, they do not include quantitative21
power evaluations - preferring statements like "Among the three types of discrepancies, the second22
type, data gap due to battery drainage, was most frequently observed." (6) or "The battery con-23
sumption test was simply whether, under regular usage, the phone could make it through the day24
without having to be charged." (12). So they do not rigorously evaluate either the power or the25
accuracy side of the tradeoff.26

Mode inference: accuracy without power, non-uniform data27
Mode inference of travel mode based on sensor data is an extremely popular subject in the litera-28
ture2. Researchers have used decision trees (14, 20), Hidden Markov Models (15, 21), and neural29
networks (3, 4) to distinguish between various subsets of travel modes. However, although the30
inference algorithms are different, most such papers use similar methods for evaluating their accu-31
racy. They typically recruit a small sample of their friends (e.g. 16 users over one day (14), 4 users32
over two weeks (21)) to collect naturalistic data along with annotations of the ground truth. The33
data collection focuses on the sensors used for analysis and omits the battery. This kind of evalua-34
tion does not meet the any of the requirements outlined above, except privacy, which is addressed35
by not publishing the dataset.36

EVALUATION SYSTEM AND EXPERIMENT DESIGN37
The EM-EVAL procedure (Section 2) allows us to estimate the power/accuracy tradeoff of various38
sensing configurations used in Human Mobility Systems (HMSes). One of the novel components39

1e.g. based on speed
2Probably because it is hard, and nobody has really solved it well yet for modes other than walking
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of the procedure involves the specification of pre-defined, artificial trips with ground truthed tra-1
jectories and modes.2

This section explores the nuances of implementing such a procedure. We first describe a3
publicly available reference implementation of a system - EM-EVAL-ZEPHYR - that can be used4
perform this procedure. We then discuss challenges encountered while using the system to perform5
an experiment in the San Francisco Bay Area (Section 6). Some of these challenges were addressed6
by system improvements, while others are documented as best practices for future data collectors.7

System overview8
EM-EVAL is a generic procedure for HMS evaluation - it does not actually collect any data. To9
use it, we need a concrete system that configures data collection based on the spec configurations,10
collects coarse temporal ground truth, periodically reads battery levels and stores data for future11
analysis.12

As part of our evaluation (Section 6), we built a system EM-EVAL-ZEPHYR that combines13
our prior work on power evaluations (16) with our existing HMS platform (8) and supports per-14
forming the EM-EVAL procedure. The system consists of three main parts:15

Evaluation Specification The spec describes an evaluation that has been performed or16
will be performed in the future. In addition to mode and trajectory ground truth, it includes the17
app configurations to be compared and the mapping from phones to evaluation roles. The spec18
automatically configures both the data collection app and the standard analysis modules.19

To reduce evaluator burden, we provide pre-processing functions to fill in trajectory in-20
formation based on route waypoints for road trips and OSM relations for public transit. We also21
provide sample notebooks to verify timelines and their components before finalizing and uploading22
the evaluation spec.23

Auto-configured Smartphone App We have generated a custom UI skin for our E-MISSION24
platform (8) that is focused on evaluation. It allows evaluators to select the current spec from the25
public datastore, and automatically downloads the potential comparisons to be evaluated, the role26
mappings and the timeline.27

Since the e-mission platform data collection settings are configurable through the UI, the28
sensing configurations defined in the spec are automatically applied based on the phone role when29
the data collector starts an experiment. For example, when starting an experiment to compare high30
accuracy (HAHFDC) versus medium accuracy (MAHFDC) data collection, the second experiment31
phone will automatically be set to MAHFDC settings. Finally, when the data collector performs32
the trips, he marks the transition ground truth in the UI, and the app automatically displays the next33
step in the timeline (Figure 3).34

Public Data + Sample Access Modules Since there are no privacy constraints, EM-EVAL-35
ZEPHYR uploads all collected data to a public instance of the E-MISSION server. The associated36
repository contains sample notebooks that can download, visualize and evaluate the data associated37
with a particular spec. All the data used in this paper is publicly available, and the notebooks can38
be manipulated interactively using binder.39

Note that although the EM-EVAL procedure is general, the current implementation of the40
EM-EVAL-ZEPHYR system is integrated only with the E-MISSION platform. Using the procedure41
with other HMSes will require re-implementing the EM-EVAL procedure with the other HMS, or42
using a combination of systems for the evaluation. For example, EM-EVAL-ZEPHYR can still read43
the battery level periodically, display the trip sequence to the data collector, and be used to mark44
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FIGURE 3: Top: Spec components in EM-EVAL-ZEPHYR include configuration, timeline and
trip details. Bottom: Sample spec for a multi-modal trip, including transfers and waits for public
transit.
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the transition ground truths. However, the evaluator needs to configure the settings for the app1
being tested manually, and to download, clean and analyse the resulting data.2

System iterations and lessons learned3
As we started collecting data, we had to resolve some ambiguities around exactly when the transi-4
tion ground truth should be collected. We also discovered best practices that increased the likeli-5
hood of successful data collection. This section outlines these lessons learned.6

System change: capture transition complexity One of the big promises of using HMSes7
for instrumenting human travel is that we don’t have to focus only on the primary mode. Instead,8
with fine-grained data collection, we can understand the full complexity of end to end travel.9

In fact, the only true unimodal trips are walking trips. Everything else is multi-modal.10
Thus, a significant change to the system was to restore the hidden complexity that is elided from11
user descriptions of travel diaries. For example, consider the trip description "Drive from Mountain12
View Library to Los Altos Library". Although that appears to be a unimodal trip, it is actually a13
multi-modal trip which involves implicit walk access sections to and from the car at the source and14
destination respectively.15

It is not possible to pre-determine the ground truth for these walk access sections since16
we cannot control which parking spaces are available when we perform the trip. We address such17
issues by adding shim sections, and expanding the start and end from points to 100m polygons. We18
can then relax the constraints around ground truth within the polygon by only using the reference19
dataset, but still check the accuracy of the mode inference (Figure 3).20

Best practice: Pilots are critical In spite of reviewing the pre-determined trajectories ahead21
of time as part of the validation process, and also having them displayed on the EM-EVAL-ZEPHYR22
UI, we found that we frequently made small mistakes, during the first round of data collection for23
a new timeline. Sometimes, we found that the route suggested by OSRM felt unsafe to bicycle24
on and we had to accordingly change our specification. The second repetition generally resolved25
these issues. In order to avoid a stressful data collection experience, we suggest running through a26
new timeline with a trial run before starting full-featured data collection.27

Best practice: Mindfulness Remembering to mark the transition ground truths was one28
of the hardest parts of the ongoing data collection and really highlights the challenges of ground29
truth collection. In spite of the fact that she was performing artifical trips to collect data for her30
own project, one of the authors forgot to mark wait -> move transitions during the pilot for the long31
multi-modal timeline because she had started checking her email while waiting. It is important to32
be present in the moment and pay attention to the context while collecting data.33

EVALUATION34
Experiment design35
EM-EVAL is a generic evaluation procedure and can be used with any kind of HMS. EM-EVAL-36
ZEPHYR is a reference implementation of EM-EVAL that used to evaluate many experimental set-37
tings relevant to HMSes over any set of trajectories. The evaluator can pick her settings based on38
her research goals. In this section, we outline our goals for this evaluation, and use them to define39
three timelines that cover 15 separate modes, including recently popular modes such as escooter40
and ebike.41

Dwell time Instead of focusing only on trips, we wanted to evaluate a timeline that in-42
cluded significant dwell time. We could see from our calibration runs that android appears to have43
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FIGURE 4: Power calibration and evaluation. Calibration: All phones were stationary, con-
figured identically and had the app-based sensing turned always on. Although there are outliers,
repeated experiments allow us to see clear behavior differences. High accuracy, high frequency
(HAHF) is the only high power configuration on android, lowering either the accuracy or the fre-
quency leads to essentially the same power drain. On iOS, the frequency does not matter at all,
the only way to reduce the power drain is to lower the accuracy. Evaluation: Based on these
calibration results, our experiment design compares high v/s med frequency on android and high
v/s low accuracy on iOS. Given the calibration results, we would expect the drain to increase with
quality, and we do see that behavior on the longest timeline for iOS and the shortest timeline for
android. On shorter timelines for iOS, the differences are small and fall within our current error
bounds. On longer timelines for android, the CPU drain of our basic duty cycling overwhelms any
improvements from duty cycling, so the HAHFDC performs worse than the accuracy control.
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id Description Outgoing trip
modes

Incoming trip
modes

Dwell time Overall time

unimodal
trip car
bike mtv la

Suburban
round trip

car bike 1 3
(city streets) hrs hrs

car scooter
brex san
jose

Downtown
library

car escooter 3 5.5
(freeway) Bus Rapid

Transit
hrs hrs

train bus
ebike mtv
ucb

Multi-modal
trip across the
bay

commuter
train

ebike
(shared)

6 12.5

subway express bus hrs hrs
city bus downtown

walk
light rail
commuter
rail

TABLE 1: Brief description of timelines, covered modes, dwell times and overall times

built-in duty cycling and including significant dwell time would allow us to capture the impact1
of this context sensitive behavior. Therefore, we structured our timeline trips as round trips to2
libraries with an intermediate dwell time ≈ 3× the mean travel time to the location.3

Broad range of modes HMS evaluations should cover a broad spectrum of trip types, and4
since we are creating artificial trips, we can structure them to maximize mode variety. In order to5
efficiently cover this space, we tried to ensure that no mode was repeated. We only had to include6
commuter rail twice since there were few other transit options to reach the starting point chosen.7

Multi-modal transfers Detecting multi-modal transfers in a HMS is tricky because there8
isn’t a clear signal similar to a trip end. We ensure that there are many transition examples by9
emphasizing multi-modal transfers.10

With those goals in mind, we decided on three artificial timelines of varying lengths that11
cover a total of 15 separate modes. We chose each timeline to be round trips to libraries so as to12
not include identifiable location data (e.g. home location) in our experiments. A description of13
each timeline with the associated modes and dwell times is given in Table 1.14

Since this paper focuses on the evaluation procedure, to avoid bias, we do not use it to eval-15
uate any particular HMS. Instead, we use it to evaluate the virtual sensors provided by smartphones16
themselves. These virtual sensors are exposed by smartphone operating systems (OSes) by com-17
bining underlying physical sensors using proprietary algorithms. iOS already restricts developer18
access to the GPS, instead supporting a virtual location sensor that chooses underlying sources19
based on developer-supplied accuracy constants. As phone OSes impose greater background re-20
strictions on apps, we can only expect the use of such sensors to grow. In this section, we analyze21
spatial accuracy and motion activity accuracy from our collected data, and draw inferences from22
them to demonstrate the benefits that can be gained by using a procedure such as EM-EVAL.23
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Spatial accuracy1
Box plots of the distribution of spatial error of the measured locations against the groundtruth in the2
different timelines are shown on the top row of Figure 5. It is interesting to note the skewed nature3
of the plots, and the presence of different outliers, whose values seem to vary across phones across4
timelines. Ad-hoc evaluation schemes would probably identify them by comparing error values5
against a threshold. Choosing this threshold without the knowledge of the distribution of error6
values would be difficult and introduce ambiguity to the evaluation. Our statistical and systematic7
approach eliminates these difficulties.8

Motion activity accuracy9
The distribution of temporal error between the ground truth section transitions and sensed activity10
transitions is shown in the bottom row of Figure 5. The plot shows that despite the presence11
of outliers, the quality of sensing does not seem to impact any difference in accuracy. Thus, a12
study focusing on places and modes but not trajectories could choose a lower quality sensing13
configuration and reduce power drain.14

CONCLUSION AND CALL TO ACTION15
Human Mobility Systems (HMSes) are complex software systems that run on equally complex16
smartphone operating systems (OSes). This complexity implies that there is rarely a simple linear17
relationship between their inputs and outputs, which complicates their evaluation.18

We outline a procedure, based on repeated travel over pre-defined artificial timelines car-19
rying experiment and control phones, to control this complexity. We show that it can control for20
outliers, and also reveal meaningful signals about the behavior of smartphone virtual sensors that21
are relevant to instrumenting human travel data.22

The procedure is privacy-preserving, so it does not need human subjects approval. It fo-23
cuses on trip diversity, not demographic diversity, so it can be undertaken by a small research24
group, or even a single researcher, as a pre-pilot before recruiting study participants. It uses pre-25
determined trips and modes, so it can efficiently explore complex or newly emerging travel pat-26
terns and modes, such as escooters. The procedure, and the associated reference implementation27
can simplify the testing required before a study is launched.28

The procedure is not a replacement for a pilot, since it does not capture user experience29
or other behavioral factors. However, it can shorten and simplify the pilot, since the pilot does30
not need evaluate quantitative “hard" factors. As a general principle, this controlled procedure31
evaluates computational features, such as power drain or accuracy, while the pilot assesses “soft"32
features such as usability and motivation.33

The procedure primarily supports direct comparisons between configurations or systems34
for the tested contexts. Based on the procedure, we may be able to model individual features of the35
HMS or the underlying system (e.g. the rate of power drain while moving). However, since both36
hardware specifications and phone OS implementations can and do change3, researchers will need37
to periodically re-tune their models, which will entail re-running the procedure.38

Finally, we have used the procedure to evaluate metrics related to sensing accuracy under39
various configurations. Post-processing algorithms can potentially compensate for low sensing40
accuracy through integration with other sources, such as GIS systems. Large-scale datasets, such as41

3battery optimization android neural network
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FIGURE 5: Spatio-temporal accuracy evaluations. Top: Distribution of the spatial error across
the timelines. The medium sensing accuracy is suprisingly close to the high accuracy, although
it has many more outliers, specially in the timeline with the underground segments. Bottom:
Distribution of the temporal error between the ground truth section transitions and sensed activity
transitions. There is essentially no difference between high and low quality sensing, even for the
longest timelines. The vast majority of the transitions occur within 5 mins, although there are
significant outliers.
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ImageNet, and the resulting toolchains, have greatly accelerated the development of algorithms in1
other domains. If HMS reseachers adopt this procedure and publish resulting data, the aggregation2
over multiple evalutions can generate a large scale, ground truthed, public dataset. This dataset3
can accelerate the development of analysis algorithms, such as mode and purpose inference, for4
HMSes.5
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