
Open Source Software Computed Risk Framework
Jon Chapman, Hari Venugopalan
University of California, Davis

Department of Computer Science
One Shields Avenue Davis, CA 95616

jwchapman@ucdavis.edu, hvenugopalan@ucdavis.edu

Abstract—The increased dissemination of open source software
to a broader audience has led to a proportional increase in
the dissemination of vulnerabilities. These vulnerabilities are
introduced by developers, some intentionally or negligently. In
this paper, we work to quantify the relative risk that a given
developer represents to a software project. We propose using
empirical software engineering based analysis on the vast data
made available by GitHub to create a Developer Risk Score
(DRS) for prolific contributors on GitHub. The DRS can then be
aggregated across a project as a derived vulnerability assessment,
we call this the Computational Vulnerability Assessment Score
(CVAS). The CVAS represents the correlation between the De-
veloper Risk score across projects and vulnerabilities attributed
to those projects. We believe this to be a contribution in trying
to quantify risk introduced by specific developers across open
source projects. Both of the risk scores, those for contributors
and projects, are derived from an amalgamation of data, both
from GitHub and outside GitHub. We seek to provide this risk
metric as a force multiplier for the project maintainers that are
responsible for reviewing code contributions. We hope this will
lead to a reduction in the number of introduced vulnerabilities
for projects in the Open Source ecosystem.

Index Terms—Big Data, Computer Security, Prediction Meth-
ods, Data Analysis

I. INTRODUCTION

Advanced software that controls much of everyday life has
increasingly been created in an open source, collaborative
manner. Many in the open source software world believe
that given enough eyeballs, all bugs (and vulnerabilities)
are shallow. This idea begins to break down at the scale
of modern software projects. We see this in the fact that
despite there being unlimited access to the code base of major
software projects such as Apache, the Linux Kernel, cURL,
etc, vulnerabilities still proliferate. The rapid growth in the
amount of code requires a different paradigm to proactively
prevent vulnerabilities before bad actors are able to exploit
them.

In the past decade, GitHub has emerged as the preeminent
platform for social software engineering [1], both open and
closed source. GitHub provides an online collaborative plat-
form for software development projects, acting primarily as
the central repository and dissemination point for the projects’
code.

This also means that GitHub has unwittingly become a
platform for the spread of security vulnerabilities. A lack
of security awareness among developers [3], [4] has led
to the inclusion of vulnerabilities. Even security conscious

developers can be responsible for creating vulnerable projects
owing to their use of third-party libraries which could have
vulnerabilities. [5] The lack of attention given to security, cou-
pled with the difficulty in managing large scale projects that
may have hundreds (or thousands!) of contributors increases
the opportunity for the inclusion of vulnerabilities. There are
also the cases of large scale projects that often underpin the
working of the internet may only have a handful of developers
working on them, but consist of many thousands of lines
of code spread across hundreds of files, such as OpenSSL.
These various challenges could could even set the conditions
for malicious users to purposely include vulnerable code in a
project that has a large audience in order to exploit later, such
as we saw with NPM. [8]

The creation of a Developer Risk Score (DRS), com-
bined with the Computational Vulnerability Assessment Score
(CVAS) for projects are in support of two closely related
research questions:

• RQ1: Can an accurate predictive model be created to give
insights into future risk of a given contributor?

• RQ2: Can a derived, composite risk index be used to
accurately predict which open source software projects
will be assigned a CVE in the near future?

II. PRIOR WORK

This is a brief overview that should serve to motivate our
work as well as provide some context to our efforts. As
we have seen no evidence of other researchers attempting to
quantify the risk of specific developers using a multi-source
data pooling approach we feel that this work is new and novel.

There are some tools out there that have similar aims
to our project. They seek to prevent vulnerabilities before
being distributed to users. These primarily center around static
analysis techniques. Some advocate using static analysis tools
[9] and others recommend increasing the skill and experience
level of those doing code review [10]

Security in the software development process is often an
afterthought [11] [12]. In many cases, security measures are
taken after an exploit has been carried out, resulting in large
amounts of damage [13]. Even for the tools that attempt to
mitigate the vulnerability before it effects users require code
integration. There is little in the way of predictive tools that
try to get a head of the vulnerability before it makes it into
the code base.



Fig. 1. The image on top shows the current pull request screen in GitHub. As
can be seen, the pull request screen informs the user of only the contributors
code. A link to the contributor’s GitHub profile is also part of the pull
request which the reviewer can visit to get additional information about
the contributor if required. However, doing so is tedious, and does not
quantify the risk associated with the contributor in any way. The image below
shows our proposed new pull request review screen with an associated user
riskiness score. This score serves to indicate the riskiness associated with the
contributor, which the reviewer can now use to decide the extent to which
review is required for the pull request in the context of better security.

There are differing opinions of why this situation persists,
from lack of awareness [14], to poor education or lack of
security culture [15], and everything in between. Providing
additional information to developers, and making it easy to
create an assessment of code to be incorporated into a project
will allow developers to make more secure choices.

Our approach is designed to give simple metrics by which
decisions to integrate (or not integrate) code, or at least
conduct a more thorough review of the code, can be made.
This results in a lowering of the ”cognitive load” of the project
maintainers in the pursuit of increasing security. [16]

III. METHOD

There exists a bipartite many-to-many relationship between
contributors and projects, since a particular contributor can
contribute to multiple projects, and since multiple contributors

can contribute to the same project. We use this mapping, as
shown in Figure 2 as the starting point of our analysis.

Each contributor is assigned a score for each project based
on the number of vulnerabilities in the project weighted by
their relative contribution to the project. This score is then
aggregated for all projects the contributor has been involved
with to calculate an effective score for the given contributor.

The sum of the scores of all contributors involved in a
project would serve as the base score for the project itself. In
future work we discuss this as a possible point of extension.
In our study, we define the relative contribution of a developer
to a project at a given point in time as the ratio of the number
of commits the contributor has been involved in at that point
in time(either as the author or as the committer) to the total
number of commits that have been made to the project at that
point.

We chose to go with this definition for the study, since the
number of commits do serve as a direct proxy for the extent of
a contributor’s involvement with the project and also since the
commit data is readily available on GHTorrent. Including the
time component in this definition is important and helps make
the score more accurate since it ensures that vulnerabilities
that existed in a project before a given developer started
contributing to it are not attributed to the contributor. An
example of this is shown in Figure 3. In the figure, Developer
A is the sole contributor to the project till point t2 when
Developer B comes in, and they both contribute equally to
the project from t2 onwards. As per our metric, at any point
in time up to t3, the riskiness score of Developer A to the
project will be 10, and that of Developer B will be 0. After
point t3, Developer A has contributed to 75% of the project
on the whole, and Developer B has contributed 25%. As a
result, after t3, Developer A’s riskiness score would be 17.5
and that of B would be 2.5

With the understanding so far, and an acknowledgement that
an iterative design process to refine this scoring method is still
required, we propose a risk scoring metric that is tentatively
defined as follows:

Let,

ci(ui, ti, pi) = Relative contribution of
Contributor ui, to Project pi at time ti

ri(ui, ti, pi) = Partial Risk Score of
Contributor ui, derived from Project pi at time ti

Based on our definitions:

ci(ui, ti, pi) =
ti∑

t=0

num commits(ui, pi, t)∑
u∈pi at time t

num commits(u, pi, t)
(1)

ri(ui, ti, pi) = ci(ui, ti, Pi) × (cve score(pi, ti)) (2)

Here, num commits(ui, pi, ti) denotes the number of
commits that have been made by contributor ui to project pi



Fig. 2. Graph showing mapping between users and projects. The bottom
nodes denote users, and those on top denote projects. Each user contributes
to multiple projects and each project contains contributions from multiple
users.

Fig. 3. This representative timeline demonstrates an example life cycle of
a software development project on GitHub. This shows when CVEs were
assigned to a project, and the points in time when different developers
contributed to a particular project. As can be seen, assigning a score to
Developer B for the CVE discovered before his/her contribution to the project
would be inappropriate. Our model fully takes into account these sort of
chronological considerations to ensure appropriate attribution. In this toy
example, our model would assign Developer A with a risk score of 17.5
and Developer B with a risk score of 2.5.

at time ti, and cve score(pi, ti) is the CVE score assigned to
the project pi at time ti.

We can use this to construct an overall risk score of a given
contributor at a specific time, in general terms:

Ri(ui, ti) = Risk Score of Contributor ui at Time ti

We then use the prior definition to construct the formal
definition of the individual developer risk score at a given
point in time as the ratio of the sum of partial risks for the
user across all their projects at that point in time to the total
number of commits made by them at that point. More formally
this can be expressed as:

Ri(ui, ti) = ∑
all pithatuihas contributed to

ri(ui, ti, pi)

∑
all pithatuihas contributed to

[
ti∑

t=0

num commits(ui, pi, t)]

(3)

This risk score essentially conveys the risk associated with
each commit made by the user, with a higher score indicating
possibility of greater risk.

IV. RESULTS

In this section we describe our experiments and preliminary
results. We first describe and report the results of a simple

Fig. 4. Simple regression plot of the average number of commits per user per
project against the number of CVEs present in the project. The plot works
in line with our intuition that the more responsibility individually taken up
by a developer, the larger the potential to introduce vulnerabilities. While
the plot was heavily cleaned up to remove outliers, it serves to motivate that
meaningful inferences can be drawn from the GitHub data towards analyzing
risk.

experiment we ran, where we analyzed the correlation between
the average number of commits made per user per project
against the number of CVEs in the project. We worked on
this with the hypothesis that the more number the number of
commits made per user on average, the more responsibility
each user takes up individually, resulting in less collaboration,
thereby leading to more vulnerabilities. The resulting plot is
shown in Fig 4. While we had to do significant cleanup of
the plot to remove outliers, the plot does seem to indicate
the presence of a correlation. We use this plot as motivation
to inform ourselves of the possibility of drawing meaningful
inferences from data. Our further, more detailed experiment
to quantifying risk is described below. While the results of
that experiment do seem to work towards our goal towards
quantifying risk, we used them to further refine our metric to
present that mentioned in Section III.

A. Experiment

We first curated a list of approximately the top 1000 users,
these were the users with the most contributions on GitHub,
which we obtained from [19]. We then obtained a list of all
projects these users had contributed to from GHTorrent and
queried them against [20] to obtain their associated CVEs.
Of the 57322 projects we obtained from the 1000 users,
618 projects had CVE scores associated with them. We then
computed riskiness scores for each of the 1000 contributors
with a simpler version of our riskiness metrics that did not
incorporate the time aspect, and then computed the relative
contribution as the ratio of the total number of commits made
by the user to the total number of commits made to the project.
The resulting distribution of user scores is shown in Figure ??.

B. Results

We saw a distinct correlation between higher risk scores
from development teams and projects having a vulnerability
at a later point in our data set. This was an approximate .63
correlation between increasing score and vulnerability. This
correlation increases as the risk score drives higher as seen in
figure 7. Our thought is that this correlation would be even



Fig. 5. Histogram showing the distribution of user scores. As can be seen
from the figure, most user scores seem to cluster between 0 and 1. The plot
only shows the counts for those users who had a non-zero score, and also
does not show scores for a tiny portion users with abnormally large scores
(over 300).

Fig. 6. Regression plot showing the user risk scores vs the vuln scores for a
project over time.

higher with cleaner data. It was difficult to parse the disparate
data sets and ensure the project was correlated to the NVD.

We anticipate greater correlation on future iterations of this
work.

V. ACKNOWLEDGEMENTS

Jon Chapman would like to thank his advisor Dr. Shyhtsun
Felix Wu, and Hari Venugopalan would like to thank his
advisor, Dr. Samuel T. King, and both of us would like to
thank Dr. Vladimir Filkov in helping to make our research
possible, providing feedback, and inspiration for our work.

REFERENCES

[1] E. Kalliamvakou, et al. ”The promises and perils of mining GitHub.”
In Proceedings of the 11th Working Conference on Mining Software
Repositories. Association for Computing Machinery, New York, NY,
USA, 92–101. 2014. https://doi.org/10.1145/2597073.2597074

[2] Chadni Islam, M. Ali Babar, Roland Croft, Helge Janicke,
”SmartValidator: A framework for automatic identification and
classification of cyber threat data”. Journal of Network and
Computer Applications, Volume 202, 103370, ISSN 1084-8045,
2022 https://doi.org/10.1016/j.jnca.2022.103370.

[3] K. Watkins and S. M. Kywe, ”Unsecured Firebase Databases: Exposing
Sensitive Data via Thousands of Mobile Apps,” Appthority, Tech. Rep.,
2018.

[4] Zuo, Chaoshun, Zhiqiang Lin, and Yinqian Zhang. ”Why does your
data leak? uncovering the data leakage in cloud from mobile apps.”
2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.

[5] Alexandre Decan, Tom Mens, and Eleni Constantinou.”On the impact
of security vulnerabilities in the npm package dependency network.” In
Proceedings of the 15th International Conference on Mining Software
Repositories. Association for Computing Machinery, New York, NY,
USA, 181–191. 2018. https://doi.org/10.1145/3196398.3196401

[6] Common Vulnerabilities and Exposures https://cve.mitre.org/, retrieved
Sept 2022

[7] National Institutes of Standards and Technology National Vulnerability
Database https://nvd/nist.gov, retrieved Sept 2022

[8] Github Commitment to NPM ecosystem security
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-
security/, retrieved Sept 2022

[9] National Institutes of Standards and Technology
Source Code Security Analyzers https://www.nist.gov/itl/ssd/software-
quality-group/source-code-security-analyzers, retrieved Sept 2022

[10] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi and C. Dangremont,
”A Manually-Curated Dataset of Fixes to Vulnerabilities of
Open-Source Software,” 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories, pp. 383-387, 2019.
doi: 10.1109/MSR.2019.00064.

[11] R. A. Khan, S. U. Khan, H. U. Khan and M. Ilyas, ”Systematic
Literature Review on Security Risks and its Practices in Secure
Software Development,” in IEEE Access, vol. 10, pp. 5456-5481, 2022,
doi: 10.1109/ACCESS.2022.3140181.

[12] H. Al-Matouq, S. Mahmood, M. Alshayeb and M. Niazi, ”A
Maturity Model for Secure Software Design: A Multivocal
Study,” in IEEE Access, vol. 8, pp. 215758-215776, 2020, doi:
10.1109/ACCESS.2020.3040220.

[13] Bana, Sarah, et. al. ”Human Capital Acquisition in Response to Data
Breaches” 2022. http://dx.doi.org/10.2139/ssrn.3806060

[14] Zwilling, M., et al. ”Cyber Security Awareness, Knowledge and
Behavior: A Comparative Study.” Journal of Computer Information
Systems. 62. 82-97. 2022. 10.1080/08874417.2020.1712269.

[15] N. Tomas, J. Li and H. Huang, ”An Empirical Study on Culture,
Automation, Measurement, and Sharing of DevSecOps,” 2019
International Conference on Cyber Security and Protection
of Digital Services (Cyber Security), pp. 1-8, 2019. doi:
10.1109/CyberSecPODS.2019.8884935.

[16] Paul, CL, and J. Dykstra. “Understanding Operator Fatigue, Frustration,
and Cognitive Workload in Tactical Cybersecurity Operations.” Journal
of Information Warfare, vol. 16, no. 2, pp. 1–11, 2017. JSTOR,
https://www.jstor.org/stable/26502752.

[17] Yamaguchi, Fabian & Golde, Nico & Arp, Daniel & Rieck, Konrad.
”Modeling and Discovering Vulnerabilities with Code Property
Graphs”. 2014. Proceedings - IEEE Symposium on Security and
Privacy. 10.1109/SP.2014.44.

[18] Georgios Gousios. ”The GHTorent dataset and tool suite.” In
Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR ’13). IEEE Press, 233–236. 2013. doi:
10.1109/MSR.2013.6624034.

[19] Most active GitHub users https://gist.github.com/paulmillr/2657075,
retrieved May 2022

[20] CVE Details https://www.cvedetails.com/, retrieved June 2022

[21] CIRCL CVE SEARCH https://cve.circl.lu/api, retrieved May 2022


